
A Machine Learning Framework for Studying
Domain Generation Algorithm (DGA)-Based

Malware

Tommy Chin1, Kaiqi Xiong2, Chengbin Hu2, and Yi Li2

1 Department of Computing Security, Rochester Institute of Technology,
tommy.chin@ieee.org

2 Florida Center for Cybersecurity, University of South Florida,
xiongk@usf.edu, chengbin,yli13@mail.usf.edu

Abstract. Malware or threat actors use a Command and Control (C2)
environment to proliferate and manage an attack. In a sophisticated
attack, a threat actor often employs a Domain Generation Algorithm
(DGA) to cycle the network location in which malware communicates
with C2. Network security controls such as blacklisting, implementing a
DNS sinkhole, or inserting a firewall rule is a vital asset to an organi-
zation’s security posture. However, all of them are typically ineffective
against a DGA. In this paper, we propose a machine learning framework
for identifying and clustering domain names to circumvent threats from
a DGA. We collect a real-time threat intelligent feed over a six month
period where all domains have threats on the public Internet at the
time of collection. We then apply the proposed machine learning frame-
work to study DGA-based malware. The proposed framework contains
a two-level model, which consists of classification and clustering is used
to first detect DGA domains and then identify the DGA of those do-
mains. Our extensive experimental results demonstrate the accuracy of
the proposed framework. To be precise, we achieve accuracies of 95.14%
for the first-level classification and 92.45% for the second-level clustering,
respectively.

Keywords: Malware, Domain Generation Algorithm, Machine Learning, Secu-
rity, Networking

1 Introduction

A computer network and its assets are frequently under a variety of attacks
including malware attacks, where threat actors attempt to infiltrate layers of
protection and defensive solutions [1–3]. Anti-malware software, for the longest
time, is a critical asset for an organization as it provides a level of security on
computer systems to deter and remove malicious threats. However, many anti-
malware solutions typically utilize static string matching approaches, hashing
schemes, or network communication whitelisting [4]. Sophisticate threat actors

and authors/developers to new malware strands purposely integrate evasive tech-
niques and covert communication channels to bypass most detection techniques,
which presents a grand challenge in securing an enterprise.

One component to some variations of malware strands is a method to com-
municate with a centralized server to service a Command and Control (C2) using
either a static or dynamic method [5]. In the static method, the malware has
been pre-written with a value such as an IP address or a domain name that be-
comes permanently fixed throughout the lifespan of the malware and that once a
security operator identifies such an illicit network, a simple firewall rule will re-
lieve the threat. In the dynamic method, the creator of the malware implements
a technique to communicate back to a variety of servers, based on a sequencing
approach known as Domain Generation Algorithm (DGA) [6]. The dynamics of
a DGA commonly utilizes a seeded function. That is, given an input such as a
timestamp, a deterministic output would follow as pre-defined by the DGA. The
challenge behind deterring a DGA approach is that an administrator would have
to identify the malware, the DGA, and the seed value to filter out past malicious
networks and future servers in the sequence.

Network security measures such as Access Control List (ACL), firewalls, and
Domain Name System (DNS) sinkholes have been the prominent best practice
to reduce the proliferation of unauthorized access and the spread of malware
strands. A DGA, however, increases the difficulty to control malicious commu-
nication as a sophisticated threat actor implements the ability to change the
server or location periodically the malware communicates back (callback) to the
C2 in an automated fashion. Overall, utilizing a DGA would primarily establish
a game of cat and mouse for both security operators mitigating the threat while
the centralized server for the C2 would frequently change location.

This study evaluates known malicious domains that exclusively belong to
DGAs and we attempt to apply machine learning approaches including multiple
feature extractions, classification, and clustering techniques. Computer systems
frequently query domain names using DNS due to vastly broad running applica-
tions and services [7]. Security appliances that monitor and evaluate each DNS
query needs to determine whether a particular domain has some level of ma-
liciousness and specifically, whether or not a specific query originates from a
DGA. If so, which one. Moreover, this study utilizes a real-time threat intelli-
gence feed that has been collected over a six-month period on a daily basis while
leveraging high-performance nodes [8, 9] from the Global Environment for Net-
work Innovation (GENI) [10] to conduct extensive data processing. We further
propose a machine learning framework to classify and detect DGA malware and
experimentally evaluate the proposed framework through a comparison of vari-
ous machine learning approaches. Specifically, our machine learning framework
consists of the following three main components: (1) Blacklist with a pattern
filter that first filters the incoming DNS queries and stores them in the blacklist.
(2) Feature extractor that extracts features from those domains that are not in
the blacklist. The domains will be sent to the next component. (3) Two-level
classification and clustering. To identify DGA domains, we start with the first-

level classification to classify DGA domains and normal domains. We then apply
the second-level clustering to group domains sequenced by the DGA. The over-
all goal is to determine the technique the DGA employs so that our proposed
framework can prevent future communication to the C2. Our evaluation results
show that we can achieve the accuracy of 95.14% for the first-level classification
and the accuracy 92.45% for the second-level clustering, respectively.

The rest of the paper is organized as follows. Section 2 defines the research
problem while Section 3 demonstrates existing related work. Section 4 presents
data collection and the proposed machine learning framework and Section 5
dicusses the experimental and evaluation of the framework. Lastly, Section 6
concludes our studies and presents future work.

2 Problem Statement

Fig. 1. Threat models: Multiple conditions for a DGA to function in a network envi-
ronment where filtering results in a firewall that prevents the communication and an
empty cell in Internet domain that results in an NX Domain error. Note, the domains
listed in the figure belong to existing live threats.

Firewall blacklisting constantly expands as the multiple sources of inputs
expand filtering rules. However, sequences in a DGA may not be known to these
inputs promptly. Moreover, for the malware to communicate correctly to an

appropriate domain, a threat actor must register each respective domain name
in the sequence to maintain the C2 or risk the loss of a node in the distribution.
Figure 1 demonstrates an example scenario for such a case.

Our research problem is to accurately identify and cluster domains that orig-
inate from known DGA-based techniques where we target to obtain a security
apparatus that autonomously mitigates network communication to unknown
threats in a sequence.

2.1 Assumptions and Threat Models

Threat actors need a method to control and maintain the malware in a C2
environment while operating in an unnoticeable manner from network security
systems hence, a DGA. The successfulness of the malware does not require a
domain to be registered or valid and that a DGA may iterate a sequence that
results in an NX DOMAIN situation (unregistered). Blacklisting, establishing a
DNS sinkhole, or implementing a firewall rule are standard techniques to prevent
malicious network activity from malware and the signatures to implement these
mitigation techniques are often provided by threat intelligence feeds. However,
this research does not utilize any blacklisting or pre-known malicious domains
to block traffic derived from a DGA in the initial stages of our analysis and that
such features are built over our observations. The main reason behind our imple-
mentation is that many threat intelligence feeds and heuristic data often provide
signatures to malware that has plagued a network or public Internet. A sophis-
ticated threat actor would implement or utilize a 0-day style malware (malicious
code that has never been seen or known to the public) and therefore, black-
listing would be inappropriate for our analysis. Our proposed machine learning
framework aims to solve the problem of detecting DGA sequences using machine
learning techniques derived from observations in a network.

3 Related Work

Current Internet and end-user systems are frequently plagued with the hazards
of malware. The landscape of the modern Internet grows as mobile devices,
Internet of Things (IoT), and network connected vehicles expand where a threat
actor may attack the increasing number of potential targets a daily basis [11,12].
Many of such systems are susceptible to malware attacks due to mismanagement
issues, poor patching behaviors, and dangerous 0-day attacks [13].

Because DGA-generated domain names contain significant features that can
be used to differentiate DGA domain names from normal ones [14]. Therefore,
many studies aim to target blocking those DGA domain names as an defense
approach [15, 16]. The DGA that generates the domain fluxing botnet needs to
be known so that we can take countermeasures. Several studies have looked at
understanding and reverse engineering the inner workings of botnets [17, 18].
Thomas et al. [19] proposed an automatic method to extract DGA from current
malware. Their study focused on domain fluxing malware and relied on the

binary extraction for DGA. Their approach is only effective for certain types
of malware [20]. Besides blocking and extracting DGAs from normal domains,
deeper study has been explored based on the features of DGA domain names.

Since the DGA domains names are usually randomly generated, the lengths
of DGA domains are very long, which is a good feature that can be used for
detecting DGA domains. However, shorter DGA domain names are more difficult
to detect. This is because most normal domains are tend to be short. Ahluwalia et
al. [21] proposed a detection model that can dynamically detect DGA domains.
They apply information theoretic features based on the notion of domain length
threshold. Their approach can dynamically detect the DGA domains with any
length. Many other works have been done on DGA detection based on the DGA
domain features.

Ma et al. [22] proposed a lightweight approach to detect DGA domains based
on URLs using both lexical and host-based features. They consider lexical fea-
tures of the URL such as length, number of dots, and special characters in
the URL path. Antonakakis et al. [23] propose a novel detection system, called
Pleiades. They extract a number of statistical features related to the NXDo-
main strings, including distribution of n-grams. Wang et al. [24] proposed using
word segmentation to derive tokens from domain names to detect malicious do-
mains. The proposed feature space includes the number of characters, digits,
and hyphens. Similar to Ma et al. [22], McGrath et al. [25] also take a close
look at phishing URLs and found that the phishing URLs and DGA domains
have different characteristic when compared with normal domains and URLs.
Therefore, they proposed a model for detecting DGA domains based on domain
length comparison and character frequencies of English language alphabets. The
similar approach based on DGA features can be find in [15,26].

In order to classify DGA domain names, Schiavoni, et al. [5] proposed a feasi-
ble approach for characterizing and clustering DGA-generated domains accord-
ing to both linguistic and DNS features. In the study, they proposed that DGA
domains have groups of very significant characters from normal domains. By
grouping the domains according to their features, the authors applied a machine
learning classifier could distinguish them from all the domains easily. Several
machine-learning techniques have been studied to classify malicious codes. They
include neural networks, support vector machines (SVM) and boosted classi-
fiers [27]. There are also several studies aiming to predict DGA domain names
from historical DGA domains [28]. Woodbridge et al. [29] used DNS queries to
find the pattern of different families of DGAs. Their approach does not need a
feature extraction step but requires a long short-term memory (LSTM) network,
which needs time to accumulate data. Similar to Woodbridge et al. [29], Xu, et.
al. [30] checked DNS similarity and pattern to predict future DGA domains.
Their approach is effective for some DGAs. Recently, researches have proposed
deep learning techniques for detecting DGAs learn features automatically, which
require no effort from human for feature analysis [31,32].

4 Design

Establishing a viable source for this research requires two components: (1) do-
mains derived from a DGA; (2) machine learning that (2a) would encompass
multiple feature extraction techniques and (2b) would entail clustering the do-
mains. Multiple online sources from simple Google searching provide example
codes for a DGA construction. However, a majority of these techniques are trivial
and fundamental at best. Online threat intelligence feeds give a more realistic
approach to examine current and live threats that roam the public Internet.
This section describes the approach for data collection and proposed a machine
learning framework for DGA malware analysis.

4.1 Threat Intelligence Feed and Ongoing Threat Data

DGAs are plentiful through multiple online examples that are found from Google
searching and Github repositories. However, sophisticated threat actors pur-
posely create tailored DGA to evaluate current detection systems. Using real-
time active malicious domains derived from DGAs on the public Internet mea-
sures the accuracy of the proposed approach. Specifically, threat intelligence
feeds collected from Bambenek Consulting [33] over a period of six months were
obtained through daily manual querying demonstrated trends of ongoing threats.
The structure of the data is presented in a CSV format of domain names, orig-
inating malware, and DGA membership with the daily file size of approximate
110MB. Figure 2 demonstrates an example feed from the collected data.

Fig. 2. Example sample dataset from Bambenek Consulting gives domain names, mal-
ware origins, DGA schema, and date collected.

4.2 The Machine Learning Framework

We propose a machine learning framework that consists of three important steps,
as shown in Figure 3. We first have the input DNS queries with the payload, then
it will be passing into our process step, which consists of 4 important components:
(1) We first use a domain-request packet filter to get domain names and store
them in the blacklist. If the input is a known domain, we will skip (2) - (4),
and directly go to the output, otherwise, we will proceed to next component.
(2) Then, a feature extractor is used to extract domain features. (3) Next, we
apply the first-level classification to distinguish DGA domains and non-DGA

domains and second-level clustering to group similar DGA domains. (4) Finally,
we detect the DGA domains. After the domain name goes through the process
step, we will append this domain to the blacklist.

Fig. 3. Machine Learning Framework.

The rest of this section discusses these important steps in details.

Blacklist To perform the classification and clustering in our following steps,
we only need the information of domain names. Since the collected raw data
contains some trivial information that is useless in our experiment, we apply a
domain-request packet filter to remove that trivial information to obtain only
domain names. This is done by using the Gruber Regex Pattern Filter [34]. All
the network traffics undergo this filtering process. The filtered domain names are
stored in the blacklist [35] and then sent to the feature extractor in next step.

Feature Extractor The second step is to extract features from the domain
names obtained from the first step. We consider each domain name as a string.
To efficiently classify domains, we use two types of features: linguistic features
and DNS features. We start with the discussions of linguistic features and then
the DNS features.

There are six linguistic features: Length, Meaningful Word Ratio, Pronounce-
ability Score, Percentage of Numerical Characters, Percentage of the Length of
the Longest Meaningful String (LMS), and Levenshtein Edit Distance. The de-
tailed description and calculation of each linguistic feature are given as follow:

Length: This feature is simply the length of a domain name, denoted by |d|.
Meaningful Word Ratio: This feature measures the ratio of meaningful words

in a string (domain name). It can be calculated as follow:

f1 =

n∑
i=1

|wi|
|d|

(1)

where wi is the i-th meaningful substring of this string, |wi| is the length
of i-th meaningful substring. A high ratio stands for a safer domain, whereas
a lower ratio indicates that it could be a DGA domain. We strict the length
of each meaningful substring |wi| in the string to be at least 4 letters because
most legitimate domain names have meaningful substrings with more than 3
letters. For example, for a domain name of yivdbook, we have f1 = (|book|)/8 =
4/8 = 0.5. If a domain name is homedepot, we have f1 = (|home|+ |depot|)/9 =
(4 + 5)/9 = 1, the domain is fully composed of meaningful words.

Pronounceability Score: In the linguistic sense, the more permissible the com-
binations of phonemes are, the more pronounceable the word is, and thus the
higher pronounceability score. Since DGA generated domains have a very low
number of such combinations, a pronounceability score becomes a useful feature
in the first-level classification. This feature uses an n-gram lookup table to eval-
uate the pronounceability of a string. We calculated the feature by extracting
the n-grams score of a domain d. We choose the substring length l ∈ 2, 3 in our
computation and count their occurrences in the English n-gram frequency text.
For a domain d, the n-grams score is calculated as follow:

f2 =

∑
n− gram(d)

|d| − n+ 1
(2)

where n is the length of the matching word in the n-gram list.
Percentage of Numerical Characters: This feature measures the percentage

of numerical characters in a string. It can be simply calculated by f3 = |n|/|d|,
where |n| is the number of numerical characters.

Percentage of the Length of LMS: This feature is to measure the length of
the longest meaningful string in a domain name. The calculation can be written
as f4 = |l|/|d|, where |l| is the length of longest meaningful string.

Levenshtein Edit Distance: This feature measures the minimum number of
single-character edits between a current domain and its previous domain. For
example, given two strings ”kitten” and ”sitting”, the Levenshtein Edit Distance
between them is 3, because the characters that need to be edited are k to s, e
to i and adding a g at the end.

Aside from linguistic features, we also look into DNS features where 27 DNS
features in Table 1 are used in this research. We utilize DNS features because
a DGA domain usually contains less information, whereas a legitimate domain
does. For example, DGA domains tend to have short time and their creation
dates are typically within one year.

Two-Level Model: Classification and Clustering To understand DGA do-
mains, we propose a two-level machine learning model consisting of the first-level
classification and the second-level clustering. In the former, we use a classifica-
tion model called J48 classifier to classify input domains into DGA domain

Table 1. DGA Classification Features

Features Description (+/-)

Expiration date If longer than 1 year +

Creation date If longer than 1 year +

DNS record If DNS record is documented +

Distinct IP addresses #. IP addresses related to this domain +

Number of distinct countries #. countries related this domain +

IP shared by domains #. domains are shared by the IP -

Reverse DNS query results If DN in top 3 reverse query results +

Sub-domain If domain is related to other sub-ones +

Average TTL DNS data time cached by DNS servers +

SD of TTL Distribution SD of TTL -

% usage of the TTL ranges Distribution range of TTL +

of distinct TTL values Different value of TTL on server -

of TTL change How frequently TTL changes +

Client delete permission If Client has delete permission -

Client update permission If Client has update permission -

Client transfer permission If Client has transfer permission -

Server delete permission If Server has delete permission -

Server update permission If Client has update permission -

Server transfer permission If Client has transfer permission -

Registrar The domain name registrar +

Whois Guard If use Whois Guard to protect privacy -

IP address same subnet If IP address is in the same subnet -

Business name If domain has a corporation name +

Geography location If domain provides address +

Phone number If domain provides a phone number +

Local hosting If use local host machine +

Popularity If on the top 10000 domain list +

Note: DN - Domain name. TTL - Time-To-Live. SD - Standard deviation. All the
features used in our model. (+/-): “+” stands for positively related to normal

domain, whereas “-” stands for negatively.

(bad domain) and non-DGA domain (good domain). Then, the classified DGA
domains will be sent to the second-level clustering, where we use the DBSCAN-
based clustering [5] to divide the DGA domains into several groups, as shown in
Figure 4.

First-Level classification: A perfect classification algorithm for classifying
DGA domains and non-DGA domains requires the maximal difference between
them. By using the features obtained above, we test different machine learning
classifiers including Decision Tree-J48, Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM), Logistic Regression and Naive Bayes to find the
best classifier. Among those classifiers, we notice that J48 is the best to classify

Fig. 4. Two-level model of classification and clustering

DGA domains (its detailed discussion is given in Section 5), so J48 is chosen as
a classifier in our first-level classification.

Second-level Clustering: Only the classified DGA domains are used for the
second-level clustering. Our clustering model is based on the DBSCAN algo-
rithm, where we use domain features to compute the distance of their domain
names and to group these domains according to their domain feature difference.
Let di and dj be domain names, where i 6= j. We first set i = 0 representing
the first domain and then calculate the overall distance between di and all other
domains. Since we have two types of features: linguistic feature and DNS feature,
the overall distance is a combination of linguistic distance and DNS similarity.
The linguistic distance is computed based on the six linguistic features followed
by the following equation:

Dl(di, dj) =

√√√√ 6∑
k=1

disk(di, dj), (3)

where disk(di, dj) is the distance of each linguistic features between two domains
di and dj . To get the DNS similarity, we first construct a weight matrix M ∈
RK×L, where K and L are the number of DNS features and linguistic features of
all the DGA domains D classified from the first-level classification, respectively.
The relationship between K and L is represented by a bipartite graph that is
represented in M, where each component Mk,l holds the weight of an edge (l, k).
For each DNS record, weight Mk,l is computed by:

Mk,l =
1

|D(k)|
, for any l = 1, ..., L, (4)

where |D(k)| is the cardinality of the subset of domains that are pointed to
the DNS record. We then use a matrix S ∈ RL×L to store DNS similarity
information, where for each component, Sdi,dj

is the similarity value of domains
di and dj . Our intuition is that when two domains point to the same DNS record
k, they should have high similarity. Therefore, we could calculate the similarity
matrix based on the weight matrix M. Let N be M normalized by columns. We
have:

N ≡ M when

(
K∑

k=1

Mk,l = 1,∀l = 1, · · · , L

)
. (5)

Final similarity matrix is calculated by:

S = NT �N ∈ RL×L. (6)

The overall distance is a combination of linguistic distance and DNS similar-
ity, which is calculated by:

D(di, dj) = Sdi,dj + log(
1

Dl(di, dj)
) (7)

After we have the overall distance, we can get all points density-reachable
from di based on the threshold distance, ε. If D(di, dj) > ε, we add those points
dj to a cluster C. The minimal cluster points, MinPts, is used to determine a
core point. Let di be a core point. If the number of point in C > MinPts, then
a cluster is formed. If di is a border point, implying that no points are density-
reachable from di, then our DBSCAN model visits the next domain. The above
steps will be repeated until all of the domains have been processed.

5 Evaluation

5.1 Global Environment for Network Innovation

GENI is an NSF funded heterogenous testbed solution. Leveraging high-performance
nodes aided in the ability to process large volumes of real-time data feeds in a
timely manner. The nodes selected for the evaluation consisted of systems run-
ning: Intel(R) Xeon(R) CPU E5-2450 @ 2.10GHz, 16 GB of hard drive space,
and 1GB of memory where the size could be manipulated, based on reservation.

Experimental Setup To evaluate our model thoroughly, we use five datasets
of DGA domain data: CryptoLocker, Tovar, Dyre, Nymaim, and Locky from the
latest DGA-feed [36–38]. We collected the DGA domain names over a period of
six months in 2017. 160,000 domain names were tested in our model. To provide

a list of normal control group domain names, we choose the top 1 million most
popular Internet domains listed in domain punch [39]. We mix the control domain
names and DGA domains names with a 1:1 ratio for the first-level classification.
In the second-level clustering, we use classified DGA domain names from the
first-level classification to cluster different groups of DGA domains.

5.2 Our Execution and Results

Experimental results To find the best model for the first-level classification,
we test five different machine learning models, J48, ANN, SVM, Logistic Regres-
sion, and Naive Bayes. Figures 5 (A) and (B) show the performance of different
algorithms on the classification of the DGA domains. We find that J48 has the
highest average accuracy, 95.14%, compared to other machine learning algo-
rithms. Figure 5 (B) also shows that J48 is the fastest one with an average of
0.0144 ms to classify the domain names. To see the accuracy of J48 associated
with scalability, we test five groups of samples for each DGA generated domain
with a total number of 1000, 5000, 15000, 20000, 50000 domain names. We find
that J48 performs the best for CryptoLocker domain names.

Fig. 5. (A) Accuracy of different machine learning algorithms (B) Classification time
of different machine learning algorithms.

Figure 6 (A) shows how the second-level clustering algorithm performs on
different DGAs. When we use both linguistic distance and DNS similarity as
the overall distance, its average accuracy is 87.64%, whereas if we only use DNS
similarity as the overall distance, the average accuracy is 89.02%. This is because
most of DGAs have very similar string composition and length. These features
can not help the clustering algorithm to identify similar DGA domains from
each other. Furthermore, we test the accuracy of clustering when more groups
are mixed together.

As Figure 6(B) shows, we test all the two group combinations for all the five
DGAs. When we mix Cryptolocker with other DGAs, the average accuracy for

Fig. 6. (A) Clustering accuracy for each DGA. (B) Clustering accuracy for each two
DGAs group.

clustering is 81.43% for all the features. However, when we use only DNS features
as the DBSCAN distance, its accuracy increases to 92.45%, which means that
most Cryptolocker domains are clustered into one group. Similarly, when test-
ing other groups, we find that the accuracies of clustering are 91.05%, 92.22%,
92.89%, and 92.57% for ovar, Dyre, Nymaim, and Locky, respectively. The re-
sult demonstrates that the clustering model is efficient to group the same DGA
domains into one group.

5.3 Discussions

As seen in our experimental evaluation, the proposed machine learning frame-
work has demonstrated the efficient way to predict a future DGA domain name.
We have evaluated the proposed machine learning framework with most latest
DGA domain names from DGA-feed to cluster and predict DGA domains from
these real-world data. Our evaluation has shown that with 33 features we pro-
posed in our model, the J48 classification algorithm performed the most effective
and efficient in comparison to ANN, SVM, Logistic, and Naive Byes due to the
minimal classification time, 0.0144 ms, and the highest accuracy, 95.14%. We
have also tested the clustering accuracy. Our result has shown that the DB-
SCAN clustering model has the accuracy of 92.45%. We have noticed that the
best accuracy we get from clustering is the one where only DNS query features
are used. The experimental results have proved that a cluster of DGA domains
usually points to several specific server IPs. DNS information of these domains
are very similar and therefore clustering them with only DNS features is very
accurate.

6 Conclusions and Future Work

The dichotomy of DGA in malware presents a grant challenge in securing an
organization. Firewall blacklisting is constantly expanded since filtering rules

are constantly added through the multiple sources of inputs. However, DGA se-
quences may not be known by the multiple sources promptly as sophisticated
malware developers can integrate DGA to bypass a majority of network con-
trols. In this research, we have proposed the machine learning framework to
circumvent threats from a DGA. The proposed framework consists of a black-
list, feature extractor, classification and clustering, and detection. Furthermore,
we have collected a real-time threat intelligence feed over a six month period
where all domains live threats on the Internet. Based on our extensive experi-
ments on the real-world feed, we have shown that the proposed framework can
effectively extract domain name features as well as classify, cluster and detect
domain names. In the future, we will explore deep learning algorithms such as
Convolution Neural Network (CNN) via tensor-flow for this research and evalu-
ate them on a real-world testbed such as GENI [40–42].

7 Acknowledgments

We acknowledge National Science Foundation (NSF) to partially sponsor the
research work under grants #1633978, #1620871, #1636622, #1651280, and
#1620862, and BBN/GPO project #1936 through an NSF/CNS grant. We also
thank the Florida Center for Cybersecurity (FC2) located at the University of
South Florida (USF) to support the research through its funding that is open
to all institutions in the State University System of Florida.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied of NSF, FC2, and USF.

References

1. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification
of malware behavior. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer (2008) 108–125

2. Chin, T., Xiong, K., Rahouti, M.: SDN-based kernel modular countermeasure
for intrusion detection. In: Proceedings of 13rd EAI International Conference on
Security and Privacy in Communication Networks, Springer (2017)

3. Ghosh, U., Chatterjee, P., Tosh, D., Shetty, S., Xiong, K., Kamhoua, C.: An SDN
based framework for guaranteeing security and performance in information-centric
cloud networks. In: Proceedings of the 11th IEEE International Conference on
Cloud Computing (IEEE Cloud). (2017)

4. Khancome, C., Boonjing, V., Chanvarasuth, P.: A two-hashing table multiple string
pattern matching algorithm. In: Tenth International Conference on Information
Technology: New Generations (ITNG), IEEE (2013) 696–701

5. Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Phoenix: DGA-based botnet
tracking and intelligence. In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer (2014) 192–211

6. Sood, A.K., Zeadally, S.: A taxonomy of domain-generation algorithms. IEEE
Security & Privacy 14(4) (2016) 46–53

7. Xiong, K.: Multiple priority customer service guarantees in cluster computing.
In: Proceedings of the IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), IEEE (2009) 1–12

8. Xiong, K.: Resource optimization and security for cloud services. Wiley-ISTE
(2014)

9. Xiong, K.: Resource optimization and security for distributed computing, https:
//repository.lib.ncsu.edu/handle/1840.16/3581. (2008)

10. B. Mark, et al.: GENI: A federated testbed for innovative network experiments.
Computer Networks (2014)

11. Xiong, K., Chen, X.: Ensuring cloud service guarantees via service level agreement
(sla)-based resource allocation. In: Proceedings of the IEEE 35th International
Conference on Distributed Computing Systems Workshops, ICDCS Workshops,
IEEE (2015) 35–41

12. Chin, T., Xiong, K.: Dynamic generation containment systems (dgcs): A moving
target defense approach. In: Proceedings of the 3rd International Workshop on
Emerging Ideas and Trends in Engineering of Cyber-Physical Systems (EITEC).
Volume 00. (April 2016) 11–16

13. Sornalakshmi, K.: Detection of DoS attack and zero day threat with siem. In:
International Conference on Intelligent Computing and Control Systems (ICICCS),
IEEE (2017) 1–7

14. Yadav, S., Reddy, A.N.: Winning with DNS failures: Strategies for faster botnet
detection. In: International Conference on Security and Privacy in Communication
Systems, Springer (2011) 446–459

15. Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically
generated domain-flux attacks with DNS traffic analysis. IEEE/Acm Transactions
on Networking 20(5) (2012) 1663–1677

16. Guo, F., Ferrie, P., Chiueh, T.C.: A study of the packer problem and its solutions.
In: International Workshop on Recent Advances in Intrusion Detection, Springer
(2008) 98–115

17. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.C., et al.: Measurements
and mitigation of peer-to-peer-based botnets: A case study on storm worm. LEET
8(1) (2008) 1–9

18. Zhang, L., Yu, S., Wu, D., Watters, P.: A survey on latest botnet attack and
defense. In: IEEE 10th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), IEEE (2011) 53–60

19. Barabosch, T., Wichmann, A., Leder, F., Gerhards-Padilla, E.: Automatic extrac-
tion of domain name generation algorithms from current malware. In: Proc. NATO
Symposium IST-111 on Information Assurance and Cyber Defense, Koblenz, Ger-
many. (2012)

20. Gardiner, J., Nagaraja, S.: On the security of machine learning in malware c&c
detection: A survey. ACM Computing Surveys (CSUR) 49(3) (2016) 59

21. Ahluwalia, A., Traore, I., Ganame, K., Agarwal, N.: Detecting broad length algo-
rithmically generated domains. In: International Conference on Intelligent, Secure,
and Dependable Systems in Distributed and Cloud Environments, Springer (2017)
19–34

22. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to de-
tect malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, ACM
(2009) 1245–1254

https://repository.lib.ncsu.edu/handle/1840.16/3581
https://repository.lib.ncsu.edu/handle/1840.16/3581

23. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W.,
Dagon, D.: From throw-away traffic to Bots: Detecting the rise of DGA-based
malware. In: USENIX security symposium. Volume 12. (2012)

24. Wang, W., Shirley, K.: Breaking bad: Detecting malicious domains using word
segmentation. arXiv preprint arXiv:1506.04111 (2015)

25. McGrath, D.K., Gupta, M.: Behind phishing: An examination of phisher modi
operandi. LEET 8 (2008) 4

26. Mowbray, M., Hagen, J.: Finding domain-generation algorithms by looking at
length distribution. In: IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE (2014) 395–400

27. A. Shabtai, et al.: Detection of malicious code by applying machine learning clas-
sifiers on static features: A state-of-the-art survey. Information Security Technical
Report (2009)

28. Sharifnya, R., Abadi, M.: A novel reputation system to detect DGA-based bot-
nets. In: 3th International eConference on Computer and Knowledge Engineering
(ICCKE), IEEE (2013) 417–423

29. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain
generation algorithms with long short-term memory networks. arXiv preprint
arXiv:1611.00791 (2016)

30. Xu, W., Sanders, K., Zhang, Y.: We know it before you do: predicting malicious
domains. In: Virus Bulletin Conference. (2014)

31. Yu, B., Gray, D.L., Pan, J., De Cock, M., Nascimento, A.C.: Inline DGA detection
with deep networks. In: IEEE International Conference on Data Mining Workshops
(ICDMW), IEEE (2017) 683–692

32. Saxe, J., Berlin, K.: eXpose: A character-level convolutional neural network with
embeddings for detecting malicious URLs, file paths and registry keys. arXiv
preprint arXiv:1702.08568 (2017)

33. Bambenek: Osint feeds from bambenek consulting. Bambenek Consulting
34. Yang, L., Karim, R., Ganapathy, V., Smith, R.: Fast, memory-efficient regu-

lar expression matching with NFA-OBDDs. Computer Networks 55(15) (2011)
3376–3393

35. Kührer, M., Rossow, C., Holz, T.: Paint it black: Evaluating the effectiveness of
malware blacklists. In: International Workshop on Recent Advances in Intrusion
Detection, Springer (2014) 1–21

36. Organization, J.B.T.: Domain feed of known DGA domains. (2017)
37. Jarvis, K.: Cryptolocker ransomware. Viitattu 20 (2013) 2014
38. Chaignon, P.: A collection of known domain generation algorithms. (2014)
39. Technologies, S.: Top million websites & TLDs. (2016)
40. Chin, T., Mountrouidou, X., Li, X., Xiong, K.: An SDN-supported collaborative

approach for DDoS flooding detection and containment. In: Military Communica-
tions Conference, MILCOM 2015-2015 IEEE, IEEE (2015) 659–664

41. Lenkala, S.R., Shetty, S., Xiong, K.: Security risk assessment of cloud carrier. In:
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM Interna-
tional Symposium on, IEEE (2013) 442–449

42. Xiong, K., Perros, H.: Sla-based service composition in enterprise computing. In:
Quality of Service, 2008. IWQoS 2008. 16th International Workshop on, IEEE
(2008) 30–39

	A Machine Learning Framework for Domain Generation Algorithm (DGA)-Based Malware
	Introduction
	Problem Statement
	Assumptions and Threat Models

	Related Work
	Design
	Threat Intelligence Feed and Ongoing Threat Data
	The Machine Learning Framework
	Blacklist
	Feature Extractor
	Two-Level Model: Classification and Clustering

	Evaluation
	Global Environment for Network Innovation
	Experimental Setup

	Our Execution and Results
	Experimental results

	Discussions

	Conclusions and Future Work
	Acknowledgments

