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Abstract—Power consumption and throughput as a function of
utilization are key measures for understanding the performance-
energy trade-offs of a server. Existing energy efficiency metrics
use these measures in various ways. In this paper, we demonstrate
the importance of taking workload characteristics into account
such that the best server can be selected on a case by case
basis. The best server will meet the performance demands of
the workload with the lowest possible energy consumption. We
rigorously evaluate existing metrics, with and without workload
weighting, using publicly available SPECpower benchmark data
for actual servers and a publicly available Google cluster usage
data. We show that using unweighted metrics to select a server
can result in selecting the wrong server ensuing in higher
operational energy use, the difference being as high as 20%
additional energy use. Weighting power consumption of a server
by the workload distribution results in a metric that is linear and
reliable in ranking of servers. An analysis of server rankings for
two different existing metrics shows that our weighted metric is
statistically significantly better than existing metrics. The results
in this paper can help data center operators to quantify the
importance of workload weighting to help them select the best
server to reduce operational energy costs.

Index Terms—Data center, energy efficiency, energy propor-
tionality, metrics, workload.

I. INTRODUCTION

Greening the data center is an active area of research. Data

center electricity use in the U.S. was 70 billion kWh in 2014

with a projection to reach 73 billion kWh by 2020 [14], a

significant (about 2%) portion of the entire U.S. electricity

consumption. Given the massive operational cost associated

with data center electricity use, it is in the interest of data

center operators, as well as the society as a whole, to reduce

energy use. Work has been done to make servers used in data

centers more energy efficient. We require metrics in order to

compare energy efficiency between servers, observe progress

over time, and/or predict energy consumption of servers. Most

of the server energy efficiency metrics only consider peak

performance and peak power consumption which typically

happens when a server is fully utilized. However, various

studies of actual server deployments in different data centers

[3], [14] have found that servers are rarely 100% utilized with

typical average server utilization being in the range of 10% to

50% depending on the type and deployment size of the data

center. Hence, an energy efficiency metric should consider the

power and performance over the entire utilization range. The

SPECpower_ssj2008 [16] benchmark (henceforth referred to

as SPECpower) is a step in this direction.

Standard Performance Evaluation Corporation (SPEC) came

up with the SPECpower benchmark after a need for a standard

server energy efficiency metric was felt. The benchmark loads

a server with a server-side-Java (ssj) application to exercise

CPU, cache, memory, and disk to find the peak throughput.

The server is then loaded from 0% to 100% of the peak

throughput in steps of 10% and corresponding power is mea-

sured at these 11 different utilization levels. The benchmark

then calculates the overall rating for a server as the ratio of

sum of performance and sum of power consumption.

It is well understood that the benchmarking environment for

a server needs to match the actual operational environment for

the results to be meaningful, or reliable. The SPEC Power and

Performance Methodology [15] states, “Unless the workload

and configurations of the benchmarked solution match your

planned solution, it could be very misleading to assume that

a benchmark result will equate to reality in a production

data center.” While hardware vendors report the SPEC overall

rating, a data center operator must take their workload charac-

teristics into account. For example, if servers in a data center

are more likely to be at 20% utilization and very rarely at

100% utilization, energy efficiency at 20% utilization should

matter more. Thus, we need a metric that takes the workload

characteristics of a data center into account. A key question

that has not been answered is, what is the impact on expected

energy savings if workload characteristics are not considered?

This paper answers this important question. Key contributions

from our paper are:

• A rigorous empirical study of the reliability of key energy

efficiency metrics using SPECpower benchmark data for

42 different servers given Google cluster usage workload.

• A demonstration of the importance of weighting existing

energy efficiency metric with workload to find the server

with the best power-performance for a given workload.

• A new metric that uses workload weighting to achieve

a near perfect energy efficiency ranking of servers for a

given workload.

II. REVIEW OF EXISTING SERVER METRICS

Power consumption of a server as a function of utilization

characterizes the power use of a server, while throughput of

the server as a function of utilization characterizes its perfor-

mance. Throughout this paper, we use 0 ≤ u ≤ 1 to denote

utilization of a server, P (u) to represent the power-utilization
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Fig. 1. Power consumption and throughput as a function of server utilization.

function, T (u) for the throughput-utilization function, and the

ratio, P (u)/T (u), to be the energy efficiency of a server at

utilization u. Figure 1 shows the P (u) and T (u) curves for

an example server. Actual servers typically have peak power

or peak performance at u = 1, idle power at u = 0, and a

linear T (u) function. Various metrics based on P (u) and T (u)
functions have been proposed to quantify and compare power

consumption and/or energy efficiency of servers. We classify

such server metrics broadly as 1) energy proportionality metric

and 2) energy efficiency metric.

A. Energy Proportionality Metrics

Ever since Barrosso et al. [1] made a case for energy

proportional computers, various metrics have been proposed to

quantify energy proportionality. An ideal energy proportional

server would consume power in proportion to its utilization,

that is, P (u) curve would be linear with P (0) = 0 (no

power consumption when idle). Such a server will have

constant energy efficiency throughout the utilization range.

Energy proportionality has historically been measured using

the Dynamic Range (DR) [14] metric,

DR =
P (1)− P (0)

P (1)
. (1)

A similar metric is Energy Proportionality Index (EPI),

EPI =
P (1)− P (0)

P (1)
· 100%, (2)

which is simply the dynamic range expressed as a percentage

and was proposed by Mahadevan et al. [9], while a comple-

mentary metric, Idle-to-peak Power Ratio (IPR),

IPR =
P (0)

P (1)
, (3)

was proposed by Varsamopoulos et al. [18]. The problem with

these metrics is that they only consider the end points in

the P (u) curve (power consumption at u = 0 and u = 1)

and completely ignore the power consumption of a server at

intermediate utilizations.

One of the most used metric [7], [8] to measure energy

proportionality is the EP metric by Ryckbosch et al. [13].

EP = 1−

∫ 1

0
P (u) du−

∫ 1

0
Pideal(u) du

∫ 1

0
Pideal(u) du

, (4)

where Pideal(u) is the power-utilization curve of an ideal

energy proportional server with the same peak power. Since,

Pideal(u) would be a line joining P (0) to P (1), we have
∫ 1

0
Pideal(u) du = P (1)

2 . Replacing this value in Eq. (4),

EP = 2− 2 ·

∫ 1

0
P (u) du

P (1)
= 2− 2 ·

∫ 1

0

PN (u) du, (5)

where PN (u) is the power-utilization curve normalized with

respect to its peak power, P (1). Therefore, EP is simply a

scaled version of 1 minus the area under the PN (u) curve.

Another recently proposed metric that takes into account the

entire P (u) curve is Energy Proportionality Coefficient (EPC)

by Fiandrino et al. [2]. It is defined as,

EPC =

∫ 1

0

sin2α du, (6)

where α is the angle made by the tangent of the P (u) curve,

α = tan−1(dP (u)
du ). However, since this metric just looks at

the instantaneous slope, a P (u) curve that increases in steps

(a staircase function) will have EPC = 0, an indication of no

energy proportionality.

All of these metrics are compared and summarized in Table

I. The following should be taken into consideration when using

energy proportionality metrics for server comparison.

1) These metrics are normalized with respect to the peak

power use. Thus, there is no way to know the actual

energy use for a server with a given workload. Two

servers with the same metric values could have very

different actual energy consumptions.

2) These metrics do not consider throughput of a server.

A server with a P (u) curve that is flat (EP = 0) could

consume less power for the same throughput compared

to a server with a EP = 1 and a high peak power use.

B. Energy Efficiency Metrics

Energy efficiency of a data center is generally measured

with Power Usage Effectiveness (PUE) [4], the ratio of total

data center power consumption to the power consumption by

IT equipment. Task schedulers are generally compared using

the Energy-Delay Product (EDP) [10] metric. One particular

benchmark called JouleSort [12], measures the energy required

to sort a fixed number of records and uses SortedRecs/Joule

as the metric. Another popular metric when comparing power-

performance trade-off between computing systems is perfor-

mance per Watt. The SPECpower benchmark [16] measures

performance, in terms of ssj operations per second (ssj_ops),

and power, in terms of Watts and the SPEC Overall Score

(SOS) is calculated as the ratio of aggregate performance and

aggregate power consumption at different utilization level,

SOS =

∑10
i=0 T (i/10)

∑10
i=0 P (i/10)

. (7)

Energy efficiency of servers are compared using this overall

score. The continuous version for SOS could be calculated as,

SOS =

∫ 1

0
T (u) du

∫ 1

0
P (u) du

. (8)



TABLE I
DIFFERENT ENERGY PROPORTIONALITY METRICS

Metric Formula Range Ideal value higher/lower

is better

Pros Cons

Dynamic Range (DR)
[14]

DR =
P (1)−P (0)

P (1)
[0,1] 1 higher Easy to calculate Only looks at end

value in P (u) curve

Energy Proportionality
Index (EPI) [9]

EPI =
P (1)−P (0)

P (1)
· 100% [0,100] 100 higher Easy to calculate Only looks at end

value in P (u) curve

Idle-to-peak Power Ra-
tio (IPR) [18]

IPR =
P (0)
P (1)

[0,1] 0 lower Easy to calculate Only looks at end
value in P (u) curve

Energy Proportionality
(EP) [13]

EP = 2− 2 ·

∫ 1
0 PN (u) du [0,2] 1 higher Takes entire P(u)

curve into account
Does not consider the
shape of P (u) curve

Energy Proportionality
Coefficient (EPC) [2]

EPC =
∫ 1
0 sin2α du [0,1] 1 higher Takes entire P(u)

curve into account
Magnitude of P (u)
curve is ignored
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Fig. 2. Power versus utilization graph for two servers, Dell PowerEdge R7425
and Fujitsu Server PRIMERGY RX2540 M4, from SPECpower benchmark
[16]. The two lines intersect at 64% utilization.

In practice, since T (u) is generally a line joining 0 and T (1)

(peak throughput), we have
∫ 1

0
T (u) du = T (1)

2 . Considering

this assumption, we can establish a relation between SOS and

EP from Eq. (5) and Eq. (8) as,

SOS =

(

T (1)

P (1)

)(

1

2− EP

)

. (9)

The above analytical relationship is an improvement on the

approximate empirical relationship derived in [7]. Few obser-

vations can be made from this relation: 1) while the energy

proportionality metric ignores peak power and throughput

of servers, SOS takes them into account, and 2) given that

the peak power and peak throughput for a server is fixed,

SOS increases (and approaches infinity) as EP increases (and

approaches 2).

III. WEIGHTING METRICS WITH WORKLOAD PROFILE

In this section, we describe the importance of area under the

power-utilization curve of a server and the notion of workload

weighting to compare energy consumption between servers.

A. Area under the power-utilization curve

The energy usage of a server over time depends upon

its power-utilization curve. In Figure 2, the power-utilization

curve for two recent 2018 servers, Dell PowerEdge R7425

and Fujitsu Server PRIMERGY RX2540 M4, from the

SPECpower benchmark [16] result, are shown. The two P (u)
curves intersect at 64% utilization. Assuming that the two

systems have similar performance (throughput) over the uti-

lization range, for server utilization of 64% and above, the

Dell server consumes less power than the Fujitsu server. This

implies that if the server utilization is always above 64%, then

the Dell server consumes less energy than the Fujitsu server for

the same workload. The opposite is true for server utilization

below 64%. Hence, in terms of energy consumption, the Dell

server is better than the Fujitsu server for utilization above

64% while being worse for utilization below 64%. So, which

system is better overall? To answer this question, the total area

under the two curves must be compared. In this particular case,

the Fujitsu server (area of 197.2) is only slightly better than

the Dell server (area of 199.7). However, an assumption that

it is equally likely for the server to be at any of the utilization

level is implied (if this were not the case, for example, if the

servers were always utilized between 0% to 50%, then the

Fujitsu server would clearly be better). Since, SOS and EP
consider the notion of area under the P (u) curve, these two

metrics are taken into account for further analysis.

B. Workload weighting

In this paper, workload is defined as the rate at which a

computing operation (for example, web request, transaction

request, and database query) is offered to a server. The

performance of a server is defined in terms of peak throughput,

or the maximum rate at which a server can complete work,

measured in operations per second (ops). It is important to note

that same workload can create different levels of utilization of

servers with different performance. For example, if a server

is fully utilized at 1000 ops, another server with double the

performance (twice as fast) will only be 50% utilized for the

same workload. We assume this linear behavior, as in practice

[16], throughput increases linearly with utilization of a server.

A time varying workload will result in a time varying

utilization (and in turn, power use) of a server. Thus, energy

consumption of a server will also depend on the workload.

More specifically, it will depend on the probability density

function (pdf) of the server utilization, f(u). Since different

organization/data centers will have different workload charac-
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teristics, an IT manager may want to select a server that is the

most energy efficient for their particular workload. The EP
or SOS metrics introduced in section II do not take workload

into account. In the following section, we demonstrate that

they do not correctly reflect the actual energy consumption

of a server for different workloads. In order to make such a

comparison, we propose workload weighted version of these

metrics, WEP (Weighted EP) and WSOS (Weighted SOS),

WEP = 2− 2 ·

∫ 1

0
f(u) · P (u) du

P (1)
, (10)

WSOS =

∫ 1

0
f(u) · T (u) du

∫ 1

0
f(u) · P (u) du

. (11)

Eq. (10) and Eq. (11) are the weighted counterpart of Eq. (5)

and Eq. (8), respectively. In the special case when f(u) is a

uniform distribution, WEP and WSOS reduce to EP and SOS,

respectively.

The workload weighted area under the P (u) curve reflects

the average power consumption by a server for that particular

workload. We call this new metric the Weighted Average

Power (WAP) of a server,

WAP =

∫ 1

0

f(u) · P (u) du. (12)

The energy consumption by a server for a given workload

is the product of WAP and time under consideration. Hence,

WAP is a linear metric, that is, a server with 10% lower WAP
than another server will consume 10% less energy compared

to that server, for the same workload.

Two servers with different performance may have different

f(u) for the same workload distribution. Figure 3 shows an

example of two servers where server 1 has a higher peak

throughput than server 2. The pdf in left (in red) is the

distribution of the workload offered to the servers. The same

workload distribution is mapped to two different pdf at bottom

(in blue), the server utilization distributions. More specifically,

the utilization distribution of server 1, f1(u), is a shrunk

version of the utilization distribution of server 2, f2(u). This

TABLE II
VARIANCE IN CHARACTERISTICS OF 42 SELECTED SPEC SERVERS

Peak power
(W)

Peak throughput
(ssj_ops)

SOS
(ssj_ops/W)

EP Year

Min 241 3.16 M 8,274 0.6 2014
Median 288 3.55 M 11,540 0.9 2015
Max 469 5.36 M 13,398 1.0 2018

illustrates that f(u) captures both the workload characteristics

as well as the throughput characteristics of a server assuming

that the servers are capable of handling peak workload. Instead

of single server comparison, if we need to find out which

server (out of a heterogeneous pool of available servers) is

most energy efficient for a data center (or a cluster), we

propose to use fA(u), the distribution of average utilization

over servers, assuming the data center (or the cluster) is

composed of that same (homogeneous) server.

IV. EVALUATION OF WEIGHTED METRICS

In this section, we evaluate and compare the usefulness of

five different metrics in predicting the energy consumption of

servers, 1) EP, 2) SOS, 3) WEP, 4) WSOS, and 5) WAP.

We demonstrate the importance of considering the workload

when selecting a server.

A. SPECpower performance-power data

SPEC maintains a database of results from SPECpower

benchmark [16] reported by various hardware vendors like

Dell, HP, Fujitsu, IBM, etc. SPEC reviews and regularly

publishes results, and there are currently results for 560 servers

out of which 40 are non-compliant with the standard. Since

this data contains a wide range of servers with high variability

in their characteristic (for example, we have servers with

peak power consumption from 44.7 Watts to 6854 Watts),

we filter out the data based on power and performance for

further analysis. Specifically, out of the 520 valid results, we

pick servers with peak power consumption below 500 Watts

since most (61%) of the servers above this peak power were

from multi node tests (average peak power of servers in real

deployment is around 330 watts [14]). We pick servers with

peak throughput above 3 million ssj operations per seconds

(ssj_ops) as majority (93%) of the servers below this peak

throughput are more than 5 years old (average lifetime of

servers [14]). Such a selection makes sense as a data center

operator would want to select from servers that are able to

meet certain performance requirement while satisfying a power

budget. We end up with 42 servers, and even though this is

only 8% of the entire data, the variability in characteristics is

significant as shown in Table II.

B. Google cluster utilization data

Google has publicly released a 29 day long cluster usage

trace [21] of one of its cells consisting of about 12.5 thousand

servers. The cluster usage trace has information on job and

task events, their constraints and resource usage, attributes
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Fig. 4. CPU usage of some selected servers throughout the trace period of
29 days and their corresponding histogram. a) daily pattern is clearly visible
where CPU usage does not exceed 0.25 b) no specific pattern where CPU
usage does not exceed 0.5 c) weekly as well as daily patterns visible and
CPU usage is high.

of physical server, etc., but sensitive information has been

obfuscated [11]. The data has various tables and our interest is

in the “task_usage” table which logs information like physical

server the task is running on, CPU usage, memory usage,

etc. about each task in the cell for every measurement period

of 5 minutes duration. Each of the 12,583 servers has a

unique machine ID associated with it. The total CPU usage

of a particular server for a 5 minute measurement interval

is calculated by summing the CPU usage of all the tasks

running on that particular server during the measurement

interval. In this way, a time series of 8,351 data points for

each server corresponding to average CPU usage in every 5

minute measurement interval over 29 days is constructed.

Figure 4 shows CPU utilization and the corresponding

histogram of 3 selected servers. Daily or weekly patterns are

visible in some of them. In the first figure, CPU utilization

ranges from 0 to 0.25, in the second figure, it ranges from

0 to 0.5, while the last one ranges from 0 to 1. The “ma-

chine_events” table in the cluster trace provides information

on server’s normalized CPU and normalized memory capacity.

We use this information to scale back CPU utilization such that

it ranges from 0 to 1. For example, the server with machine

ID 3739434716 (first server in Figure 4) has normalized CPU

capacity of 0.25 and hence we observe its CPU usage is

between 0 and 0.25. We scale its CPU usage by multiplying it

by 4. There were negligibly few points (less than 0.001%) that

were above 1 after scaling the CPU usage, which we truncated

to 1. The overall average utilization of servers after scaling was

about 40%, typical of such hyper-scale data center deployment

[14], validating our approach. The “machine_events” table also

contains information on when a server is added, removed, or

updated in the cluster. We take into consideration only those

servers that are present from the beginning of the trace and

that are not updated or removed from the cluster throughout

the 29 day trace period. There were 7,171 such servers (out of

12,583) that were in the cluster throughout the trace period.

Figure 5 shows CPU usage and the corresponding histogram

a) machine ID 3739434716 b) machine ID 711935    c) machine ID 4802086681
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Fig. 5. CPU usage of same servers in Figure 4 and their corresponding
histogram after scaling or removing from consideration. a) scaled by 4 b)
scaled by 2 c) no scaling required.

of the same 3 selected servers in Figure 4 after being scaled.

In our analysis, we multiply the CPU utilization trace of each

Google server thus obtained by 3 million ssj_ops to get our

workload trace for evaluation. This is because our set of 42

servers from SPEC data have peak throughput above 3 million

ssj_ops. This avoids any overload situation (offered workload

being greater than server’s peak throughput).

C. Server selection with weighted metrics

Given one workload trace (from the Google cluster data)

and one server characteristic (from SPECpower data), we can

calculate the utilization and in turn the power consumed by

that server. If we denote w to be the workload (measured

in ssj_ops), server utilization can be calculated from the

inverse of the throughput-utilization function of the server,

u = T−1(w). Now, power can be calculated from this

utilization using the power-utilization function, P (u). Since,

SPECpower data only has throughput and power at 11 discrete

utilization levels, we linearly interpolate it to get T (u) and

P (u) at all 0 ≤ u ≤ 1. Energy consumption is the product of

power and the time interval. Energy consumed by a server for

the entire length of the workload trace can be calculated by

summing up the energy consumed at each time interval.

We have a set of 42 different servers from the SPEC

database, and each server may have a different energy con-

sumption for a particular workload. This creates a ranking of

servers from best to worst. The server that consumes the least

energy for a workload is the best (most energy efficient) server

for that workload. We have five metrics, two metrics that do

not take workload into consideration (EP and SOS) and three

workload weighted metrics (WEP, WSOS, and WAP). Best

metric is the one that ranks the servers in a similar way as

ranked according to their energy consumption (ground truth),

that is, the metric is able to select the most energy efficient

server, from a set of possible servers, given a workload. We

need certain criteria to quantify which metric is better, and

correlation has been found to be a good measure for this task

[20]. If there is a high correlation between energy consumption

of a server and the metric value, we can say that the metric is



useful in determining energy efficiency. On the contrary, if the

correlation is closer to zero, this implies that the metric does

not inform on energy consumption of a server. We use three

popular correlation coefficients for our evaluation, as common

in the literature [20].

• Pearson’s Linear Correlation Coefficient (PLCC):

PLCC =

∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, (13)

where n is the number of observations of two variable

X = {xi}1≤i≤n and Y = {yi}1≤i≤n, x̄ and ȳ are sample

mean of variables X and Y respectively.

• Spearman’s Rank Correlation Coefficient (SRCC):

SRCC = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(14)

where di is difference between two ranks.

• Kendall’s Rank Correlation Coefficient (KRCC):

KRCC =
2(nc − nd)

n(n− 1)
(15)

where nc and nd are the number of concordant and

discordant pairs, respectively.

While PLCC is a measure of linear dependency, SRCC and

KRCC are a measure of rank correlation. Whenever we have

some kind of subjective ranking and we need to measure

how close this ranking is to the objective ranking (ground

truth), we use SRCC and KRCC. However, for the sake of

completeness, we have included PLCC in our analysis. Since

we care more about ranking rather than the linear relation,

SRCC and KRCC are more relevant for this study. SRCC

and KRCC are both measuring the monotonicity of the two

variables. We calculate PLCC, SRCC, and KRCC (higher

magnitude is better) between the energy consumption of 42

servers (ground truth) with each of the five metric values for

those same servers. Our objective is to find out which server

would be the best for the given workload and which metric

correctly predicts this. We take each of the 42 different SPEC

servers, one at a time, and assume a data center is populated

with that particular server (7,171 homogeneous servers in our

case). Energy consumed by the data center given that a server

was deployed can now be calculated separately for each of the

42 available server. In order to calculate the three workload

weighted metrics, WEP, WSOS, and WAP, we consider the

pdf of average utilization, fA(u) as described in the previous

section. Note that fA(u) may be different for each of the 42

servers.

Figure 6 shows the metric versus energy consumption for

all the five metrics. All three correlation coefficients for each

of the metric is shown in Table III and the best value for

each column is highlighted in bold. We find that although EP

shows some negative PLCC, it is not a good metric to find

the best server in terms of energy efficiency as SRCC and

KRCC are both close to zero. Weighting this metric to get

WEP does not affect the nature of the result as seen with

small correlation values. SOS, which is an energy efficiency

TABLE III
CORRELATION OF SERVER ENERGY CONSUMPTION WITH DIFFERENT

WEIGHTED AND UNWEIGHTED METRICS

Metric PLCC SRCC KRCC

EP -0.3581 0.0002 0.0221
SOS -0.2033 -0.0563 -0.1220
WEP -0.0259 0.0283 0.0197
WSOS -0.9854 -0.9880 -0.9233

WAP -0.9937 -0.9870 -0.9210

metric, seems to do better than EP in ranking of servers, but

the correlation values are still small. However, when we weight

this metric to get WSOS, results improve dramatically. This is

seen both in Figure 6 (d) where WSOS almost monotonically

increases as energy consumption decreases, and in Table III

where all the correlation coefficients are close to -1. Similar

results were found for WAP. Energy consumption increases

as WAP increases, so there is a positive correlation. For

comparison purposes such that all correlation coefficients are

negative, the WAP metric values were multiplied with -1.

This does not affect the observations or nature of results, but

simply changes the sign of the correlation coefficient (we are

interested in magnitude rather than sign). We can see that

the WAP correlation coefficient values are also close to -1.

Even though, the SRCC and KRCC values of WSOS are

slightly higher than WAP, they are not statistically significantly

different (using Fisher’s r-to-z transformation and z-test at 0.05

level of significance). WSOS and WAP are able to correctly

rank the servers according to energy consumption. In addition,

WAP has a linear relation with energy consumption which is

a desirable property.

Next, we wish to determine the robustness of the metrics for

different workloads. For this we consider the 7,171 workload

traces individually and calculate PLCC, SRCC, and KRCC

between the energy consumption of 42 servers with each of the

five metric values given a particular workload trace. Since, we

have 7,171 different workload traces, we repeat this calculation

for each workload. Table IV lists the summary of correlation

values (highest value in bold) of the five metrics for all the

workloads. The Mann–Whitney U test between each 10 pairs

of the five metrics repeated for all three correlation coefficient

(30 tests in total), shows that all of them are statistically

significantly different at 0.05 level of significance. Various

observations can be made from this table:

• EP isn’t a good metric to predict energy consumption of a

sever for a workload as they have low correlation values.

• Weighting EP by the workload distribution to get WEP

does not improve the result.

• SOS is better than EP at predicting energy consumption

of servers but the correlation values are still small.

• WSOS and WAP are significantly better than EP, WEP,

and SOS at predicting energy consumption of servers.

• WSOS has a higher range compared to WAP, signifying

that WAP is more robust than WSOS and is also signifi-

cantly better.
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Fig. 6. Different metrics, a) EP, b) WEP, c) SOS, d) WSOS, and e) WAP, versus energy consumption for all 42 servers. The red cross shows the best server
select by that particular metric.

TABLE IV
CORRELATION OF SERVER ENERGY CONSUMPTION WITH DIFFERENT WEIGHTED AND UNWEIGHTED METRICS FOR 7,171 WORKLOAD TRACES

Metric
PLCC SRCC KRCC

Min Median Mean Max Min Median Mean Max Min Median Mean Max

EP -0.6499 -0.3390 -0.3516 -0.2825 -0.2545 0.0184 -0.0080 0.0573 -0.1986 0.0267 0.0077 0.0499
SOS -0.8318 -0.1616 -0.2016 0.0104 -0.8102 -0.0296 -0.0634 0.1017 -0.6446 -0.1034 -0.1223 -0.0012
WEP -0.6981 -0.0104 -0.0385 0.0670 -0.5295 0.0385 0.0015 0.1010 -0.3868 0.0197 -0.0068 0.0592
WSOS -0.9951 -0.9940 -0.9929 -0.5660 -1.0000 -1.0000 -0.9995 -0.7532 -1.0000 -1.0000 -0.9985 -0.6144
WAP -1.0000 -1.0000 -1.0000 -0.9980 -1.0000 -1.0000 -0.9999 -0.9906 -1.0000 -1.0000 -0.9993 -0.9419
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Fig. 7. Comparison between two servers that are considered best by SOS
(Huawei Fusion Server 2288H V5) and WSOS/WAP (Huawei Fusion Server
RH2288H V3). a) Throughput-utilization curve b) power-utilization curve c)
efficiency-utilization curve.

TABLE V
COMPARISON OF TWO SERVERS, ONE RANKED HIGHEST BY SOS AND

ANOTHER RANKED HIGHEST BY WEIGHTED METRIC

Server
Peak
throughput

Peak
power

SOS WSOS WAP
Energy
(MWh)

V3 4,009,210 329 12,212 10,292 116 575.30
V5 5,604,530 423 13,398 8,486 141 687.34

D. Example of selecting the wrong server

We want to highlight why choosing a server ranked higher

by the SOS metric without taking workload into consideration

can result in choosing a server that would consume more

energy than a server ranked lower. Among the set of 42

servers, the Huawei Fusion Server 2288H V5 has the highest

SOS rating of 13,398 ssj_ops/W (shown with a red cross in

Figure 6 (c)). While the server that consumed the least amount

of energy was the Huawei Fusion Server RH2288H V3 (taking

the entire 7,171 workloads for 29 days into consideration),

which was marked the best by the weighted metrics WSOS

and WAP (shown with a red cross in Figure 6 (d) and (e)).

Let us compare the two servers side-by-side to get a better

understanding. We will refer to the two servers as V3 and

V5 for brevity. Figure 7 shows the throughput, power, and

efficiency curves for both the servers. We can observe that V5

has a higher throughput as well as power consumptions across

the utilization range. V5 also has higher energy efficiency than

V3 for most of the utilization range. Some important properties

of both servers, along with metric values, are shown in Table

V. V5 consumes 687.34 MWh energy, which is 20% more that

V3’s 575.30 MWh consumption, as shown in Figure 8, for the

workload we considered. Even though V5 looks better in terms

of power, performance, and efficiency, than V3, this counter

intuitive result is due to the fact that the workload causes V5 to

operate at lower utilization (and thus lower efficiency) than V3.

More specifically, for the same workload, V5’s overall average

utilization was 20% while V3’s overall average utilization

was about 30%. And since, V3’s energy efficiency at 30%

utilization is higher than V5’s energy efficiency at 20%, it

consumes less energy overall. Our workload weighted metric

was able to identify this relation as shown in Table V. When

considering the 7,171 workload traces individually, V5 wasn’t

the best for any of them, consuming 5% to 27% (20% on

average) higher energy than the best server. Selecting a more

powerful and energy efficient server, by SOS metric, can

cost 20% more electricity which highlights the importance of

taking workload into consideration by data center operators.

V. RELATED WORK

Sound energy efficiency metrics are required to make com-

parisons and measure progress over time. Numerous metrics

to evaluate data center efficiency including Energy Reuse

Effectiveness (ERE) [17], Energy Reuse Factor (ERF) [17],

Return Temperature Index (RTI) [6], and Rack Cooling Index

(RCI) [6], have been proposed but the most used is still,

PUE [4]. References [19] and [2] describe these, and many
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Fig. 8. Energy consumption of the cluster when using V3 and V5 servers.

other, metrics in detail. PUE, however, does not take energy

efficiency of IT equipment into account, but only its power

consumption. Metrics for system level energy efficiency like

those proposed in [2], [9], [12], [13], [16], [18] are particularly

of interest as reviewed in section II. Work in [8] studies

the improvement of EP and SOS of server over the past

decade using the SPECpower benchmark data. Their finding

that high energy proportionality of a server doesn’t necessarily

imply higher energy efficiency is in concert with our findings.

Similarly, [7] studies different energy proportionality metrics

and tries to find an empirical, if not an analytical, relation

between them. They find an empirical relation between EP

and SOS, which is approximate. We believe our relationship

in Eq. (9) is exact, assuming servers have a linear throughput-

utilization curve. Hanson et al. [5] emphasized the importance

of capturing the workload variability for power-performance

benchmarks, but did not study or quantify workload weighting.

Our work differs from, and builds upon, existing work

in two ways. Our work reveals new insights into the effect

of workload on power-performance metrics. Our work also

develops and empirically evaluates how weighting existing and

new metrics with workload can result in a better selection of

the most energy efficient server for given workload.

VI. SUMMARY AND FUTURE WORK

In summary, this paper puts forward the idea of workload

weighting of existing energy efficiency metrics for predicting

the most energy efficient server. New workload weighted

metrics are proposed and empirically evaluated to show their

reliability in ranking of servers for various workloads. This

paper also demonstrates how ignoring workload characteristics

can lead to selection of a server that consumes 20% more

energy than the most energy efficient server for a particular

Google cluster workload. While there are numerous features

of a server to take into consideration, we believe that energy

consumption along with performance are the two key features

and our workload weighted metrics will help data center

operators in selecting the appropriate server for their data

center.

Publicly available real data center server utilization data is

very limited. The publicly available Google cluster usage data

was transformed to obtain individual server utilizations used

as workload in our work. Validating results in this paper with

representative server utilization data from smaller enterprise

and/or service provider type data centers is one possible future

direction. In the future, we would like to study the effect of

different types of workload (CPU intensive, memory intensive,

or network intensive) on our results.
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