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Abstract—Multi-Tenant Data Center (MTDC) operators can 

increase their profits by oversubscribing their power 

infrastructure. However, without an appropriate power control 

mechanism, oversubscription can lead to expensive unplanned 

service outages. We propose a new power control mechanism, 

LOCAP (LOCAl Price for power), as a means of 1) incentivizing 

tenants to reduce power use to save energy and 2) controlling 

tenant power use to prevent over capacity cases. LOCAP is a real-

time power pricing mechanism for setting local power price based 

on an optimization approach where the objective is to maximize 

aggregate tenant revenue while ensuring that total data center 

power consumption does not exceed capacity. Local price is set by 

the data center operator to reflect the current total power demand. 

Individual tenants use the current local price and their Service 

Level Agreement (SLA) parameters to determine how much 

power to consume. We evaluate LOCAP using workloads from 

real data center traces and compare with a no oversubscription 

case and with COOP, an existing market-based mechanism. 

Simulation results show that our new mechanism benefits both the 

tenant, by decreasing leasing costs, and the operator, by 

decreasing capital expense, and achieves the goal of keeping total 

power consumption under the data center power capacity limit 

while reducing overall energy use. 

I. INTRODUCTION 

Data centers are expensive to build. Infrastructure costs vary 
according to the size, location, redundancy, and tier of the data 
center but generally scale linearly to the critical power [2]. 
Critical power is, on average, less than 60% of the total power 
drawn by the data center [13]. The Capital Expense (CapEx) to 
build a data center can range from $11 to $25 per watt [14]. 
Given the high cost of building a data center, we would like to 
operate it at maximum power capacity for as much time as 
possible. A conservative approach is to install a maximum 
number of servers such that the sum of the rated maximum 
power consumption of the individual servers is less than the 
power capacity of the data center. However, the actual power 
draw of a server is dependent on its workload with peak power 
consumption occurring during 100% utilization. Such high 
utilization occurs only rarely. The average server utilization, 
even in very large hyperscale data centers may be no more than 
45% [13]. Furthermore, even though individual servers or racks 
may reach peak power capacity infrequently, it is extremely rare 
for the data center as a whole to reach its peak power. This is 
due to workload multiplexing. A study of a real data center 
cluster at Google with 5000 servers demonstrates that the actual 
power use effectively never exceeds 72% of the maximum 
capacity [6]. 

Data center operators are incentivized to oversubscribe their 
existing power infrastructure to increase their power utilization 
and to lower the Total Cost of Ownership (TCO). Power 
oversubscription means that the sum of peak power 
consumption of individual servers is greater than the power 
capacity limit. Power oversubscription is profitable and 
increases data center efficiency, but there is a risk involved of 
simultaneous peaking of server workloads such that power 
consumption exceeds the capacity. To tackle the problem of 
power overload, various power capping techniques have been 
proposed [3], [15]. Such techniques can be applied to owner-
operated data centers. We need an indirect mechanism to 
implement this in a MTDC where the data center operator can 
neither know the workload nor control individual server power 
consumption [8]. 

An MTDC is a data center where the operator owns the 
infrastructure (building, power, and cooling) and leases the 
facility to multiple tenants. Tenants, who pay a monthly lease 
bill, may have their own servers installed and in turn provide a 
service to their own customer. During power overload, there is 
no mechanism in place for an MTDC operator to communicate 
this emergency to the tenants. Moreover, the operator does not 
have direct control over a tenant’s servers or workload. Hence, 
oversubscribing power infrastructure of an MTDC requires a 
mechanism to coordinate between the operator and tenants. We 
propose a new control mechanism called LOCAP that enables 
power capping at the data center level to avoid power overload 
situation. LOCAP incentivizes tenants to reduce power use as 
well as enables power oversubscription of an MTDC. In this 
paper, we make two significant contributions: 

 New pricing scheme for MTDC: In contrast to the flat 
monthly subscription fee charged by an MTDC operator, 
that is prevalent today [7], we propose to charge tenants 
for power use separately using a local price. Tenants pay 
only for energy they consume and this incentivizes 
tenants to use the available power wisely, thus 
preventing them from being wasteful. 

 Algorithm to update local price: We model a tenant’s 
revenue using an appropriate utility function and 
formulate dynamic pricing as an optimization problem of 
maximizing aggregate utility of tenants. We develop an 
iterative real-time local price update algorithm that 
ensures that the total power consumption of an MTDC is 
below the data center power limit. 



II. OVERVIEW 

In 2014, data centers in the U.S. consumed 70 billion kWh 
of electricity, which is about 1.8% of the total U.S. electricity 
consumption [13]. Around one fourth of total data center energy 
consumption is from MTDCs. Thus, the MTDC is an important 
type of data center. Fig. 1 shows a simple MTDC power 
infrastructure hierarchy without any redundancy. 

A. Utility Pricing 

Utilities generally charge industrial customers with peak 
pricing comprising of an energy charge and a demand charge 
[7]. The energy charge is the cost of actual energy consumed by 
the data center (in $ per kWh) during the billing period 
(typically, a month). Demand charge is for the maximum 
average power draw for a time interval (usually 15 minutes) by 
the data center (in $ per kW) during the entire billing period. The 
power limit imposed by power utilities on large industrial 
customers like an MTDC is contractual. Utilities may also 
impose additional penalties if the actual demand exceeds the 
contracted demand. 

B. Operator Leasing Scheme 

MTDC operators generally charge tenants based upon their 
power subscription ($/kW/month) [7]. We will argue that such a 
flat pricing scheme does not encourage tenants to adopt power 
management techniques. Tenants may not have to keep all of 
their servers fully powered-up all the time, during periods of low 
workload they may be able to power-down some of their servers 
to a sleep state or operate servers at a lower frequency. 

C. Tenant Service Level Agreement 

Tenants, who are the service providers, have a contract in the 
form of a Service Level Agreement (SLA) with their customers. 
The SLA defines some Quality of Service (QoS) metrics that the 
tenant is obligated to provide to its customers throughout the 
period of the contract. For example, having a 95-percentile 
response time of 500 milliseconds [7]. The SLA typically also 
contains some penalty statement if the terms are violated. There 
is a trade-off in the costs tenants pay for power versus penalties 
paid to customers for failing to meet the SLA. 

III. SYSTEM MODEL 

Consider an MTDC with 𝑁  tenants given by the set 
𝒩 = {1, 2, ⋯ , 𝑁}. The time under consideration is divided into 
𝑇 time slots given by the set 𝒯 = {1, 2, ⋯ , 𝑇}. Let the critical 
power capacity of the data center be 𝐶 . Each tenant, 𝑖 ∈ 𝒩 , 
subscribes to, and can draw, a maximum power of 𝐶𝑖. Since the 
operator oversubscribes the data center, we have 

∑ 𝐶𝑖 ≥ 𝐶𝑖∈𝒩 . (1) 

A. Tenant and Operator Power Consumption 

Each tenant 𝑖 has 𝑀𝑖 homogeneous servers out of which 𝑚𝑖
𝑡 

servers are kept powered-on during time interval 𝑡 ∈ 𝒯. The rest 
of the servers are in sleep mode for energy conservation. A 
server consumes 𝑃𝑆 power when in sleep mode, 𝑃𝐼  power when 
idle, and 𝑃𝑀 power when fully utilized. The workload of a tenant 

is defined for a time interval by the average request rate 𝜆𝑖
𝑡 . Let 

the average service rate of a server be 𝜇𝑖 , then the average 

utilization of a server will be 
𝜆𝑖

𝑡

𝑚𝑖
𝑡𝜇𝑖

 and using the power model in 

[6], we have 

𝑥𝑖
𝑡 = [𝑀𝑖 − 𝑚𝑖

𝑡]𝑃𝑆 + 𝑚𝑖
𝑡 [𝑃𝐼 + (𝑃𝑀 − 𝑃𝐼) (

𝜆𝑖
𝑡

𝑚𝑖
𝑡𝜇𝑖

)]       if   
𝜆𝑖

𝑡

𝑚𝑖
𝑡𝜇𝑖

< 1,

= [𝑀𝑖 − 𝑚𝑖
𝑡]𝑃𝑆 + 𝑚𝑖

𝑡𝑃𝑀                                                 otherwise,

 (2) 

where 𝑥𝑖
𝑡  is the total power consumed by tenant 𝑖  in time 

interval 𝑡. Our objective is to have  ∑ 𝑥𝑖
𝑡 ≤ 𝐶𝑖∈𝒩 , ∀𝑡 ∈ 𝒯, that  

is, the sum of power consumed by all tenants to be less than or 
equal to the data center capacity. An MTDC operator provides 
cooling of server rooms along with power to tenants. The power 
used by the cooling infrastructure of a data center can be 
significant and a popular metric used to capture this is Power 
Usage Effectiveness (PUE). PUE is defined as the ratio of total 
power consumed by the MTDC to the power consumed by the 
IT equipment and ranges from 1.1 to 2.0 [2], [11]. The total 
power drawn by the MTDC from the power utility is the product 
of total power consumed by the IT equipment and its PUE. 

B. Tenant Delay Model 

In this paper, we consider tenants who provide request-
response delay sensitive web services to their customers. Stated 
in their SLA is to have 95 percentile delay below a threshold, 

𝑑𝑖
𝑡ℎ  during each time interval. We model each tenant as an 

M/M/n queue as in previous research [16]. The probability of 
sojourn time being greater than the threshold is well known and 
can be found in [1]. Hence, we can solve for the number of 
servers, required to keep this probability less than 0.05 (for 95 
percentile delay). 

C. Local Power Price 

In this paper, we propose a new pricing structure for MTDCs 
to encourage tenants to be energy efficient. A flat price 
($/kW/month) for infrastructure (for space and cooling) is 
charged as subscription fee and a real-time local power price 
($/kWh), 𝑙𝑝

𝑡 ,  is charged as power consumption fee such that 

𝐿𝑝
𝑚𝑖𝑛 ≤ 𝑙𝑝

𝑡 ≤ 𝐿𝑝
𝑚𝑎𝑥 . Here, 𝐿𝑝

𝑚𝑖𝑛  and 𝐿𝑝
𝑚𝑎𝑥  denote the minimum 

and the maximum value for local price. This local power price 
is updated every time interval and can be viewed as a power 
scarcity index. We assume that the tenants know the range 

Figure 1: Power delivery infrastructure of an MTDC with N tenants 
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[𝐿𝑝
𝑚𝑖𝑛 , 𝐿𝑝

𝑚𝑎𝑥]. The operator keeps the price at a minimum during 

normal operation. However, in periods of power overload the 
local price would be increased to force tenants to reduce power 
use until the power overload subsides. This pricing scheme 
opens up the opportunity for oversubscribing the data center by 
varying the local price. Dynamic pricing is a well-known 
technique for demand side management in the utility grid [12]. 

D. Tenant Revenue, Cost, and Profit 

The power consumption of a tenant depends on the number 
of powered-on servers and the workload. The number of servers 
kept powered-on will depend on the incoming request rate and 
the SLA with customers as well as the local power price and 
valuation of workload by the tenant. We model revenue of 
tenants and their valuation of customer request rate using a 
utility function. The utility function is denoted as 𝑈(𝑥, 𝜔) , 
where 𝑥 is power consumed and 𝜔 is a time varying parameter 
to reflect changing economic opportunity of tenant that depends 
on workload. The utility function represents the revenue a tenant 
generates by consuming 𝑥 units of power. This information is 
private to the tenant. We consider a quadratic utility function as 
used in [12] 

where 𝛼 is a utility function parameter fixed for a tenant. As 
proposed earlier, tenants pay a flat monthly subscription fee, 𝐹, 
and a power consumption fee. The cost of consuming 𝑥 units of 
power when the local price is 𝑙𝑝 is 𝑙𝑝𝑥. Hence, for a time interval 

the total profit of a tenant is given as 

𝑃(𝑥, 𝜔) = 𝑈(𝑥, 𝜔) − 𝑙𝑝𝑥 − 𝐹 (4) 

where 𝑃(𝑥, 𝜔)  is the tenant’s profit and each term in the 
equation is in units of $/hr. Fig. 2(a) shows utility, cost, and 
profit of a tenant as a function of power consumption. 

Tenants would like to maximize their profit. The power 
consumption level that leads to maximum profit can be found by 
taking the derivative of (4) and setting it to zero. This gives us 

𝜕𝑈(𝑥, 𝜔)

𝜕𝑥
= 𝑙𝑝 = 𝜔 − 𝛼𝑥 (5) 

where 
𝜕𝑈(𝑥,𝜔)

𝜕𝑥
 is also known as the marginal benefit [12]. From 

(5) tenants can determine their optimal power consumption to 
maximize profit for a given local price set by the operator. This 
optimal power consumption level is shown in Fig. 2(b), which 
is also known as the demand function in microeconomics. We 
can see that as local price increases, optimal power demand 
decreases. Our choice of the utility function (3) led to such a 
linearly decreasing demand function, which is convenient [12]. 

IV. LOCAL PRICE UPDATE ALGORITHM 

It is in the best interest of all tenants as well as the data center 
operator, to maximize the aggregate utility of tenants. But there 
is a constraint that total power consumption should not exceed 
capacity. This problem can be formulated as the following 
constrained optimization problem, 

max
𝑥𝑖

𝑡∈𝐼𝑖,𝑖∈𝒩,𝑡∈𝒯
∑ ∑ 𝑈(𝑥𝑖

𝑡 , 𝜔𝑖
𝑡)

𝑖∈𝒩𝑡∈𝒯

, s. t. ∑ 𝑥𝑖
𝑡

𝑖∈𝒩

≤ 𝐶,    (6) 

∀𝑡 ∈ 𝒯,  where 𝐼𝑖 = [0, 𝐶𝑖]  is the range of possible power  
consumption levels by tenant 𝑖. Equation (6) is separable in 𝑡 
and it can be solved independently for each time interval [12]. 
Hence, for each time interval 𝑡 ∈ 𝒯, we can solve the following, 

max
𝑥𝑖∈𝐼𝑖,𝑖∈𝒩

∑ 𝑈(𝑥𝑖 , 𝜔𝑖)

𝑖∈𝒩

, s. t. ∑ 𝑥𝑖

𝑖∈𝒩

≤ 𝐶. (7) 

We can see that (7) is separable in 𝑥𝑖, power consumption by 
each tenant, for some specific time interval but is coupled by the 
constraint that sum of power consumption by all tenants must 
not exceed the power capacity. Since our objective function is 
concave, (7) can be solved using convex programming 
techniques [5] in a central fashion. A centralized solution 
requires the operator to know the utility function parameters of 
each tenant. As this information is private to each tenant, such a 
solution is not feasible. Hence, we need a distributed approach. 

The Lagrangian [5] of problem (7) is 

𝐿(𝑥, 𝛽) = ∑ 𝑈(𝑥𝑖 , 𝜔𝑖)

𝑖∈𝒩

− 𝛽 (∑ 𝑥𝑖

𝑖∈𝒩

− 𝐶) (8) 

where 𝛽 is the Lagrange multiplier for the time interval under 
consideration. We can see that (8) is separable in 𝑥𝑖. Hence, the 
Lagrange dual function [5] is 

𝐷(𝛽) = max
𝑥𝑖∈𝐼𝑖,𝑖∈𝒩

 𝐿(𝑥, 𝛽)

= ∑ 𝐵𝑖(𝛽)

𝑖∈𝒩

+ 𝛽𝐶
 (9) 

where 

𝐵𝑖(𝛽) = max
𝑥𝑖∈𝐼𝑖

 𝑈(𝑥𝑖 , 𝜔𝑖) − 𝛽𝑥𝑖 (10) 

and the dual problem is 

min  𝐷(𝛽), s. t.   𝛽 ≥ 0. (11) 

We can observe that the dual objective function 𝐷(𝛽) in (9) can 
be decomposed into 𝑁 sub-problems given in (10). These can be 
solved by tenants individually in a distributed fashion. 

Strong duality holds, and solving the dual problem in (11) is 
equivalent to solving the original optimization problem in (7) 
[12]. The solution to dual problem, 𝛽∗, can be found and tenants 
can in turn find their optimal power consumption levels 𝑥𝑖

∗ by 
solving (10). A closer look at the objective function in (10) and 

𝑈(𝑥, 𝜔) = {

𝜔𝑥 −
𝛼

2
𝑥2            if    0 < 𝑥 <

𝜔

𝛼
,

𝜔2

2𝛼
if    𝑥 ≥

𝜔

𝛼
,
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the tenant’s profit function in (4) reveals their similarity. For a 
tenant, solving (10) is equivalent to maximizing their profit, 
which is what any rational tenant would do. Optimal power 
consumption for maximum profit can easily be found by solving 

(5) as 𝑥𝑖
∗ =

𝜔𝑖−𝑙𝑝

𝛼𝑖
. Hence, if the operator sets the local price as  

 𝑙𝑝 = 𝛽∗ and tenants try to maximize their own profit, we are 

guaranteed by strong duality that total power consumption by 
tenants does not exceed the capacity. 

The dual problem can be solved iteratively using the gradient 
projection method. We update the solution by adding the 
negative of the gradient ∇𝐷(𝛽) after each time interval [9] as 
follows 

𝛽𝑡+1 = [𝛽𝑡 − 𝛶
𝜕𝐷(𝛽𝑡)

𝜕𝛽
]

+

 (12) 

where 𝛶 is the step size and [. ]+ = max {. , 0}. We can get the 
derivative from (8) and (9) as 

𝜕𝐷(𝛽)

𝜕𝛽
= 𝐶 − ∑ 𝑥𝑖

∗

𝑖∈𝒩

 (13) 

where 𝑥𝑖
∗ are solution of subproblems in (10) (the optimal power 

consumption level of tenants). Replacing this value of the 
derivative in (12) and assuming the data center operator sets the 
local price according to the iterative solution, that is, 𝑙𝑝 = 𝛽, we 

get our final price update algorithm. To prevent local price from 
being arbitrarily large or small, we bound it within the range 

[𝐿𝑝
𝑚𝑖𝑛 , 𝐿𝑝

𝑚𝑎𝑥]. Hence, we have 

𝑙𝑝
𝑡+1 = [𝑙𝑝

𝑡 + 𝛶 (∑ 𝑥𝑖
𝑡∗

𝑖∈𝒩

− 𝐶)]

𝐿𝑝
𝑚𝑖𝑛

𝐿𝑝
𝑚𝑎𝑥

 (14) 

where [. ]𝑙
ℎ = min {ℎ, max {. , 𝑙}}. 

Note that ∑ 𝑥𝑖
𝑡∗

𝑖∈𝒩  is the total power consumption by the 
data center (demand) and 𝐶 is the power capacity (supply). Our 
price update rule and tenant’s reaction, also presented in  

Algorithms 1 and 2, is intuitive in the sense that when demand 
exceeds supply, we increase the price and when supply exceeds 
demand, we decrease the price, proportional to the difference 
between demand and supply. The minimum value of local price, 

𝐿𝑝
𝑚𝑖𝑛 , must be such that operator can transfer its electricity cost 

onto the tenants. 

V. EVALUATION 

In this section, we describe our trace-based simulation for 
evaluating LOCAP and comparing it with an existing method. 

A. Experimental Setup 

We performed a discrete-event simulation for one day with 
a 5-minute time interval (288 time slots). We consider an 8 MW 
multi-tenant data center having a PUE of 1.8 [2], [13], hence, it 
has a contract demand of 14.4 MW with the power utility. We 
consider a simplified peak pricing scheme employed by the 
utility with an energy charge of $0.06 per kWh, demand charge 
of $11.58 per kW, and an additional penalty charge of $11.58 
per kW for exceeding the contracted demand [10]. A 25% 
oversubscription has 3% probability of overloading (43.2 
minutes a day) [8], but our control mechanism decreases this 
duration. We assume that the MTDC power infrastructure can 
sustain such brief power overload without service disruption. 
The data center operator leases out its infrastructure to tenants at 
a flat subscription fee of $100/kW/month. Additionally, there is 
a separate local power price that the operator varies between 
$0.1/kWh and $0.5/kWh which is updated every time interval 
according to (14). We take the step size, 𝛶, to be 0.1. 

We consider that there are three tenants, each with 10,000 
homogeneous servers having sleep, idle and maximum power 
consumption as 𝑃𝑆 = 10 watts, 𝑃𝐼 = 145 watts, and 𝑃𝑀 = 330 
watts, respectively [13]. Hence, the tenants are subscribing to 
3.33 MW of power and there is about 25% oversubscription. We 
let 𝜔 vary in the range [0.1, 10.0] and is decided by the tenants 
individually, proportional to their workload such that enough 
servers are kept powered-on to meet the SLA under minimum 
local price. The power consumption level, 𝑥, is calculated from 
the number of servers required using (2). Hence, one way of 

setting 𝜔  is as, 𝜔 = 𝐿𝑝
𝑚𝑖𝑛 + 𝛼𝑥  and is updated every time 

interval. Similarly, 𝛼  is in the range [0, 3] and for a similar 
power consumption level, a higher value implies higher revenue 
and less sensitive to the changes in local price. For our 
simulation we fix 𝛼 for the three tenants to 2.4, 0.8, and 0.4, 
respectively. 

We use workload traces from [11], shown in Fig. 3, which 
have hourly varying traces from Hotmail, Wikipedia, and 
Microsoft Research (MSR), for tenants 1, 2, and 3, respectively. 

Algorithm 1 : Operator price update algorithm. 

1: For each time interval 𝑡 ∈ 𝒯, at the end 
2:     Monitor power consumption 𝑥𝑖

𝑡 of each tenant, 𝑖 ∈ 𝒩. 
3:     Compute new local power price 

𝑙𝑝
𝑡+1 = [𝑙𝑝

𝑡 + 𝛶 (∑ 𝑥𝑖
𝑡

𝑖∈𝒩

− 𝐶)]

𝐿𝑝
𝑚𝑖𝑛

𝐿𝑝
𝑚𝑎𝑥

. 

4:     Communicate new price to all tenants. 
5: End for  

Algorithm 2 : Reaction algorithm for each tenant 𝑖 ∈ 𝒩. 
1: For each time interval 𝑡 ∈ 𝒯, in the beginning 
2:     Receive local power price 𝑙𝑝

𝑡  from operator. 
3:     Update power consumption value to 

𝑥𝑖
𝑡 =

𝜔𝑖
𝑡 − 𝑙𝑝

𝑡

𝛼𝑖

. 
4: End for  
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These traces are normalized with respect to the tenant’s 
maximum service capacity and scaled to have an average 
utilization of 20%, 40%, and 60%, respectively. We 
synthetically increased the workload at the 6th hour to create a 
power overload situation. We take the average service rate of a 
server to be 𝜇 = 10 requests per second for all tenants. The 
tenants are providing a request-response type of web service to 
their customers. To avoid the request queue from being 
infinitely large when the system is unstable (𝜌 ≥ 1), we limit the 
central queue size to 100 times the number of servers for each 
tenant. Tenants have an SLA with their customer to keep the 95 
percentile delay under 350 milliseconds during each time 
interval. Each tenant keeps a sufficient number of servers 
powered-on to meet SLA. Violation of the SLA by a tenant will 
result in a penalty paid back to their customer denoted by 
decreasing revenue as per the utility function. We consider the 
following two baselines to compare LOCAP against. 

NOOV (NO OVersubscription): This is the case when there 
is no power oversubscription of the data center and no control 
mechanism in place. For this case, we have a 10 MW data center 
instead of 8 MW, which significantly increases the CapEx. 

COOP (CO-Ordinated Power management): This is a 
market mechanism approach that reward tenants for power 
reduction during power overload situation as described in [8]. 
This can be viewed as the operator buying back power from the 
tenants during power overload. We set maximum reward rate to 
$0.5/kW/hr which is consistent with the range chosen for local 
price in the case of LOCAP. 

In both the cases, the operator leases space at a flat fee of 
$150 per kW per month [7] and there is no incentive for the 
tenants to reduce power during normal operation. 

B. Experimental Results 

Fig. 4, Fig. 5, and Fig. 6 show the power consumption level 
of individual tenants and their total for NOOV, COOP, and 
LOCAP, respectively. A power overload occurs at 6th hour of 
the simulation, which is when both mechanisms kick in to 
prevent sustained power overload. COOP starts by offering a 
reward rate while LOCAP reacts by increasing the local power 
price. The reward rate and the local price can be seen in Fig. 10. 
These results show that COOP and LOCAP both cap total power 
consumption and enable power oversubscription of an MTDC. 
However, there is one fundamental difference. In LOCAP, since 
we charge tenants separately for power, it encourages tenants to 
put unnecessary servers to sleep even during normal operating 
conditions. Whereas, in the case of COOP, the incentive for 
power reduction exists only during power overload situations 
during which the operator actively offers a reward rate. This 
distinction can be observed between Fig. 5 and Fig. 6. The total 
power consumption in case of LOCAP is always less than 
COOP at each time interval. Fig. 12 compares monthly energy 
consumption for the three cases. We can see that LOCAP 
reduces energy consumption by 34% compared to the baselines. 

Fig. 7, Fig. 8, and Fig. 9 show the delay performance of the 
tenants under different cases. The percentage of requests that 
meet the delay threshold is calculated and any point above the 
95 percent line denotes the SLA being satisfied. In the case of 
NOOV, the SLA is always met, whereas for COOP and LOCAP 
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Figure 4: Power consumption for NOOV Figure 5: Power consumption for COOP Figure 6: Power consumption for LOCAP 

Figure 7: Delay performance for NOOV Figure 8: Delay performance for COOP Figure 9: Delay performance for LOCAP 

Figure 10: Real time local price for LOCAP and  
reward rate for COOP. 

Figure 11: Monthly profits for tenants and 
operator under different cases. 

Figure 12: Monthly energy consumption 
under different cases. 



we have some tenants not meeting the SLA during the power 
overload situation. Such short-term performance degradation 
cannot be avoided, and might be preferable to a power failure, 
during power emergencies [8]. Hence, an oversubscribed 
MTDC is suitable for tenants who can tolerate occasional 
performance loss in exchange for a lower monthly cost. 

Fig. 11 shows the monthly profits for the operator and three 
tenants under different cases. We can see that the operator profit 
for oversubscribed cases increases by about 64% compared to 
that of NOOV. Revenue and cost of tenants under NOOV and 
COOP were similar, leading to similar profits. However, for the 
case of LOCAP, while revenue was similar, monthly payment 
by a tenant to the operator decreased by 13%, on average, from 
$150 per kW to about $130 per kW. 

VI. RELATED WORK 

Much work has been done to investigate power capping 
techniques which can prevent power overload situation in data 
centers [3], [15]. However, such work has focused on owner-
operated data centers and is not suitable for MTDC. Recent 
studies [7], [8], [11] have focused on MTDC to have 
coordination between operator and tenants. These works are 
based on incentive mechanisms where the operator offers 
financial reward to tenants for power reduction. The work in [8], 
which introduces COOP that we have compared against, is most 
closely related to our work in the sense that both try to solve the 
same problem. We note that COOP is a bidding scheme in which 
tenants are rewarded for power reduction. A proper baseline is 
required to measure power reduction. COOP proposes current 
power consumption of tenants as their baseline [8]. This could 
encourage tenants to be wasteful, when a reward is not in effect, 
and set their baseline high such that when a reward is announced, 
they can reduce more power and gain larger rewards. The choice 
of baseline may be a weakness of such schemes [4]. 

In [17], a dynamic pricing scheme is developed to propagate 
operator’s electricity cost onto tenants. However, they do not 
consider data center power capacity in their problem 
formulation, which should not be exceeded for safe power 
oversubscription. The aggregate utility maximization approach 
used in our work has been used for demand side management in 
smart grids [12] as well as for flow control in network links [9]. 
Our work differs from [9] and [12] in that we bound the real time 
local price from being arbitrarily small or large. If the local price 
is not bounded, a very small value would mean that the MTDC 
operator cannot transfer its electricity cost onto the tenants, 
incurring loss. Conversely, if the local price is very large, tenants 
may have to pay unreasonably high fees for electricity. To the 
best of our knowledge, LOCAP is the first dynamic local pricing  
control mechanism to be proposed in the literature that enables 
power oversubscription as well as promotes energy saving in 
MTDC. 

VII. CONCLUSION 

In this paper we have shown how local power price can serve 
to 1) enable MTDC operators to oversubscribe power and 
prevent over-capacity situations from occurring, and 2) reduce 
overall energy consumption of an MTDC. With about 16 billion 
kWh electricity consumed by MTDCs in the U.S. [13], a 34% 
energy reduction achieved by LOCAP could translate into 5.4 

billion kWh of energy savings annually in the U.S. alone (if 
LOCAP were widely adopted). 

ACKNOWLEDGMENT 

We would like to thank Mohammad A. Islam and Shaolei 
Ren for providing us with the workload trace and to Bruce 
Nordman for his contributions on local price. We also thank the 
anonymous reviewers for their valuable feedback. 

REFERENCES 

[1]  I. Adan and J. Resing, Queueing Systems, Eindhoven University of 
Technology. Department of Mathematics and Computing Science, 2015. 

[2]  L. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as a Computer: 
An Introduction to the Design Of Warehouse-Scale Machines.” 
Synthesis Lectures On Computer Architecture, Morgran & Claypool 
Publishers, 2013. 

[3]  A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar, “The 
Need for Speed and Stability in Data Center Power Capping,” Third 
International Green Computing Conference (IGCC’12), 2012. 

[4]  S. Borenstein, M. Jaske, and A. Rosenfeld, “Dynamic Pricing, 
Advanced Metering, and Demand Response in Electricity Markets,” 
University of California Energy Institurte: Center for the Study of 
Energy Markets, 2002. 

[5]  S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge 
University Press, 2004. 

[6]  X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a 
Warehouse-Sized Computer,” International Symposium on Computer 
Architecture, 2007. 

[7]  M. Islam, H. Mahmud, S. Ren, and X. Wang, “Paying to Save: Reducing 
Cost of Colocation Data Center via Rewards,” IEEE International 
Symposium on High Performance Computer Architecture, 2015. 

[8]  M. Islam, X. Ren, S. Ren, A. Wierman, and X. Wang, “A Market 
Approach for Handling Power Emergencies in Multi-Tenant Data 
Center,” IEEE International Symposium on High Performance 
Computer Architecture, 2016. 

[9]  S. Low and D. Lapsley, “Optimization Flow Control–I: Basic Algorithm 
and Convergence,” IEEE/ACM Transactions on Networking, Vol. 7, 
No. 6, December 1999, pp. 861-874. 

[10]  Middle Tennessee Electric Membership Corporation, “Rate Structure 
For Business and Industry”, 2017, http://www.mtemc.com/pages.cfm 
/name/b04_rates. 

[11]  S. Ren and M. Islam, “Colocation Demand Response: Why Do I Turn 
Off My Servers?,” International Conference on Autonomic Computing, 
2014. 

[12]  P. Samadi, A. Mohsenian-Rad, R. Schober, V. Wong, and J. Jatskevich, 
“Optimal Real-Time Pricing Algorithm Based On Utility Maximization 
For Smart Grid,” IEEE International Conference on Smart Grid 
Communications, 2010. 

[13]  A. Shehabi, S. Smith, N. Horner, I. Azevedo, R. Brown, J. Koomey, E. 
Masanet, D. Sartor, M. Herrlin, and W. Lintner, “United States Data 
Center Energy Usage Report.” Lawrence Berkeley National Laboratory, 
Berkeley, California, 2016. 

[14]  W. Turner IV and K. Brill. “Cost Model: Dollars per kW Plus Dollars 
per Square Foot of Computer Floor,” Whitepaper, Uptime Institute, 
2008. 

[15]  Q. Wu, Q. Deng, L. Ganesh, C. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, 
and Y. Song, “Dynamo: Facebook's Data Center-Wide Power 
Management System,” IEEE International Symposium on Computer 
Architecture, 2016. 

[16]  L. Yu, T. Jiang, and Y. Cao, “Energy Cost Minimization for Distributed 
Internet Data Centers in Smart Microgrids Considering Power Outages,” 
IEEE Transactions on Parallel and Distributed Systems, Vol. 26, No. 1, 
January 2015, pp. 120-129. 

[17]  Y. Zhan, M. Ghamkhari, D. Xu, and H. Mohsenian-Rad, “Propagating 
Electricity Bill Onto Cloud Tenants: Using a Novel Pricing 
Mechanism,” IEEE Global Communications Conference 
(GLOBECOM), 2015. 


