Theorem 1. Let

$$\mathbf{T} = \begin{pmatrix} f & \mathbf{c}^T \\ \hline \mathbf{b} & \mathbf{A} \end{pmatrix}$$

be a tableau, let $\mathbf{B} = (\mathbf{A}_{j_1} \cdots \mathbf{A}_{j_m})$ with columns $\mathbf{A}_{j_1}, \ldots, \mathbf{A}_{j_m}$ linearly independent and let \mathbf{X} be a non-singular matrix with first column $(1, 0, \ldots, 0)^T$. If

$$\mathbf{XT} = \widetilde{\mathbf{T}} = \left(egin{array}{c|c} \widetilde{f} & \widetilde{\mathbf{c}}^T \ \hline \widetilde{\mathbf{b}} & \widetilde{\mathbf{A}} \end{array}
ight)$$

is such that

$$\widetilde{\mathbf{T}}_B = [\widetilde{\mathbf{T}}_{j_1} \cdots \widetilde{\mathbf{T}}_{j_m}] = \left(egin{matrix} \mathbf{0}^T \ \hline \mathbf{I} \end{array}
ight),$$

then

$$\widetilde{\mathbf{T}} = \begin{pmatrix} f - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} & \mathbf{c}^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A} \\ \hline & \\ \mathbf{B}^{-1} \mathbf{b} & \mathbf{B}^{-1} \mathbf{A} \end{pmatrix}.$$

and

$$\mathbf{X} = egin{pmatrix} rac{1 & -\mathbf{c}_B^T \mathbf{B}^{-1}}{\mathbf{0} & \mathbf{B}^{-1} \end{pmatrix}$$

where $\mathbf{c}_{B}^{T} = (c_{j_{1}}, \dots, c_{j_{m}})^{T}$.

Remark.

An important corollary is that for each $1 \leq j \leq n$,

$$(*) \qquad \widetilde{c}_j = c_j - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_j$$

and

$$(*) \qquad \widetilde{\mathbf{A}}_j = \mathbf{B}^{-1} \mathbf{A}_j.$$

In the simplex procedure there are two row operations: either we multiple some row $i \in \{1, \ldots, n\}$ by α , or we add some multiple of a row $i \in \{1, \ldots, n\}$ to a row $j \in \{0, \ldots, n\}$. The first operation corresponds to pre-multiplication of \mathbf{T} by $\mathbf{I}(i, \alpha)$ which is obtained from the identity matrix \mathbf{I} by replacing 1 in the entry (i, i) with α , and the second operation corresponds to pre-multiplication of \mathbf{T} by $\mathbf{I}(i, j, \alpha)$ which is obtained from the identity matrix \mathbf{I} by replacing 0 in the entry (i, j) with α . This means that $\widetilde{\mathbf{T}}$ is obtained from \mathbf{T} by a sequence of pre-multiplications by such matrices. Note that in all cases the matrix we pre-multiply by has the first column $(1, 0, 0, \ldots, 0)^T$, i.e. we never add a multiple of row 0 to row i where $i \in \{1, \ldots, n\}$ and we never multiply row 0 by a constant. Therefore, the product of these matrices has first column $(1, 0, 0, \ldots, 0)^T$ since the product of two matrices with the zero column $(1, 0, 0, \ldots, 0)^T$.

Proof.

Claim. The inverse of a matrix **X** with the first column $(1, 0, 0, ..., 0)^T$ also has the first column $(1, 0, 0, ..., 0)^T$.

Proof. Let **A** be a matrix with *m* columns. If **X** has first column $(1, 0, 0, ..., 0)^T$, then the first column of **AX** is simply the first column of **A**. Since $\mathbf{X}^{-1}\mathbf{X} = \mathbf{I}$, the first column of \mathbf{X}^{-1} is the first column of \mathbf{I} : $(1, 0, 0, ..., 0)^T$.

Let $\mathbf{X} = \left(\frac{1 | \mathbf{u}^T}{\mathbf{0} | \mathbf{U}}\right)$ and by the claim we can let $\mathbf{X}^{-1} = \left(\frac{1 | \mathbf{w}^T}{\mathbf{0} | \mathbf{W}}\right)$. Note that $\mathbf{X}^{-1}\mathbf{X} = \mathbf{I}$ implies that $\mathbf{0} = \mathbf{u}^T + \mathbf{w}^T\mathbf{U}$ and $\mathbf{W}\mathbf{U} = \mathbf{I}$. So $\mathbf{U} = \mathbf{W}^{-1}$ and $\mathbf{u}^T = -\mathbf{w}^T\mathbf{U}$. We have that $\mathbf{T} = \mathbf{X}^{-1}\mathbf{\widetilde{T}}$. Therefore,

$$\left(\frac{\mathbf{c}_B^T}{\mathbf{B}}\right) = \mathbf{T}_B = \mathbf{X}^{-1} \widetilde{\mathbf{T}}_B = \left(\frac{1 \mid \mathbf{w}^T}{\mathbf{0} \mid \mathbf{W}}\right) \left(\frac{\mathbf{0}^T}{\mathbf{I}}\right) = \left(\frac{\mathbf{w}^T}{\mathbf{W}}\right)$$

So $\mathbf{w} = \mathbf{c}_B$ and $\mathbf{W} = \mathbf{B}$. This implies $\mathbf{U} = \mathbf{B}^{-1}$ and $\mathbf{u}^T = -\mathbf{c}_B^T \mathbf{B}^{-1}$. Now that we know \mathbf{X} , we get the formula for $\widetilde{\mathbf{T}}$, as well.