
Two-phase simplex method

Suppose we are given an LP in standard form

Minimize z = cTx

subject to
(∗)

{
Ax = b,
x ≥ 0.

As before, we assume that the rank of the system is m, since otherwise we simply
delete some dependent equations. We also may assume that bi ≥ 0 for each i, since
otherwise we can multiply the corresponding equation by −1

First, we digress about basic feasible solutions of (*). A basis of (*) is a set B of
m linearly independent columns of A. We often view B as a square non-degenerate
submatrix of A. We also associate with B the variables corresponding to the columns
of B. A basic feasible solution of (*) corresponding to a basis B is a solution of (*)
such that
(i) every variable not corresponding to a column in B equals 0;
(ii) the value of every variable corresponding to a column in B is nonnegative.

Note that under condition (i), the system Ax = b becomes Bx̃ = b, where x̃ is
the truncation of x corresponding to B. Since B is non-degenerate, there is only one
solution of such a system. Observe that this solution is not a convex combination
of any other feasible solutions of (*). That is, it is a “corner” of the set of feasible
solutions of (*).

We already know that once we have a b.f.s. for any LP, we can solve it in a finite
time. But how do we find out whether our system has feasible solutions at all and if
it has, how do we find a b.f.s.?

To do this, we solve an auxiliary LP for which we know from the beginning that
it has a b.f.s. The new system of equations is obtained from (*) by adding to each
Equation i a summand yi and by demanding that yi ≥ 0 for each i. The new objective
function to minimize is ξ = y1 + . . . + ym. In other words, we have the following
system:

Minimize ξ = y1 + . . .+ ym

subject to

(∗∗)


(I | A)

(y
x
)

= b,

y ≥ 0,
x ≥ 0.

The tableau for the new LP will be

y1 y2 . . . ym x1 . . . xn
y0 = −ξ a0,0 1 1 . . . 1 0 . . . 0

y1 a′1,0 1 0 . . . 0 a′1,1 . . . a′1,n
y2 a′2,0 0 1 . . . 0 a′2,1 . . . a′2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
ym a′m,0 0 0 . . . 1 a′m,1 . . . a′m,n
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System (**) is of course not equivalent to (*). A good feature of (**) is that it
has the basic feasible solution: xj = 0 for j = 1, . . . , n and yi = a′i,0 for i = 1, . . . ,m.
Furthermore, since we minimize the sum y1 + . . .+ ym of nonnegative variables, the
objective function is bounded from below, and hence after a finite number of steps
we will find the optimal value of ξ. Furthermore, if (*) has any feasible solution,
then (**) has a solution with ξ = 0. Thus, if the optimal solution of (**) is not 0,
we conclude that (*) has no feasible solutions at all.

Suppose that ξ = 0. Then we have some feasible solution of (*). But we want a
basic feasible solution. If none of yi is in the basis, then we do have a b.f.s. for (*).
Suppose that, say y1, is the basic variable corresponding to Row 1. Since ξ = 0, we
have a′1,0 = 0. Since the rank of A was m, the equation contains a non-zero coefficient
at some xj. Since, the coefficient is non-zero, xj is not in the basis. So, we pivot on
a′1,j. It may spoil lexicography, but none of a′i,0 has changed (since a′1,0 = 0) and hence
stays non-negative. We can do this consecutively for every yi that still is in the basis
and finally get a basis consisting only from xj. Recall that no a′i,0 changes during
this procedure. Then we simply delete all columns corresponding to y1, . . . , ym and
move the columns corresponding to basic variables in front of other columns. This
way, we will get all rows (apart from Row 0) lexicographically positive, and can start
our basic algorithm (with replacing back the objective function).

Altogether, we have proved the following theorem.

Theorem 1 For every linear program P exactly one of the following alternatives
holds:
(a) there are no feasible solutions,
(b) there are solutions with arbitrarily small z = cTx,
(c) the minimum of z iz finite and there exists an optimum basic feasible solution.
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