Matrix games

A vector y € R™ is stochastic if y; > 0 for every i € {1,...,m} and > ",y = L
Throughout, assume x,y are stochastic vectors in R” and R™, respectively. Let A = {a;;}
be an m x n payoff matrix for a game with zero sum. If the first player chooses his/her
strategy ¢ with probability y; for every i = 1,...,m, and the second player chooses his/her
strategy j with probability z; for all j = 1,...,n then the expectation of the profit of the
first player will be

m n

F(A)y,x) = Z Z agyir; =y’ Ax.

i=1 j=1

Thus the first player can provide the expected profit v;(A) = maxy min, F'(A,y,x) and the
second player’s expected loss can be made at most
v9(A) = min, maxy, F(A,y,x). It is not hard to see that v;(A) < vy(A) for every payoff
matrix A.

We need the following lemma.

Lemma. For any payoff matriz A and stochastic y € R™, ming y? Ax = min; Y ;" | yia; ;.
And for any stochastic x € R", maxy y’ Ax = max; Z?:l a; ;T;,

Proof. Let t = min; Y " y;a; ;. We have that
n m n m n
yIAx =D Y yiaigr; =) w5 ) yiaig > Y wit=t,
j=1 i=1 =1 =1 j=1

so min, y? Ax > t. Furthermore, for any j € {1,...,n},
miny’ Ax < yTAej = Z Yili j,
i=1

where e; € R" is the jth standard basis vector. Hence, miny y” Ax < min; y” Ae; = ¢ and
the conclusion follows.
The proof of the second sentence is similar. O

Theorem. For every payoff matriz A, v1(A) = vy(A).
PROOF. Consider the following LP1:

Find maxv;

v —anyr —a1Y2 ... —ApilYm < 0
V1 =AY —aY2 . —Umplm < 0
such that
(0 +y2 ... +Ym = 1
U1 unconstrained
Yi = 0 Vi

Using the lemma, one can check that the maximum possible v; in this LP is exactly v;(A).
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Similarly, ve(A) is the solution of the the following LP2:

Find minws

T ) c. Tn = 1
—Q1121 —Q12T2 ... —QA1pTy +U2 Z 0
such that
—Qp1T1 —OmaTo ... —QmpLy, +Uo > 0
;g = 0 Vj
Vs unconstrained

Both these problems have feasible solutions (any pure strategies would do). Moreover,
they are DUAL. This proves the theorem.



