Matrix games

A vector $\mathbf{y} \in \mathbb{R}^m$ is stochastic if $y_i \geq 0$ for every $i \in \{1, \ldots, m\}$ and $\sum_{i=1}^m y_i = 1$. Throughout, assume \mathbf{x}, \mathbf{y} are stochastic vectors in \mathbb{R}^n and \mathbb{R}^m , respectively. Let $A = \{a_{ij}\}$ be an $m \times n$ payoff matrix for a game with zero sum. If the first player chooses his/her strategy i with probability y_i for every $i = 1, \ldots, m$, and the second player chooses his/her strategy j with probability x_j for all $j = 1, \ldots, n$ then the expectation of the profit of the first player will be

$$F(A, \mathbf{y}, \mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} y_i x_j = \mathbf{y}^T A \mathbf{x}.$$

Thus the first player can provide the expected profit $v_1(A) = \max_{\mathbf{y}} \min_{\mathbf{x}} F(A, \mathbf{y}, \mathbf{x})$ and the second player's expected loss can be made at most

 $v_2(A) = \min_{\mathbf{x}} \max_{\mathbf{y}} F(A, \mathbf{y}, \mathbf{x})$. It is not hard to see that $v_1(A) \leq v_2(A)$ for every payoff matrix A.

We need the following lemma.

Lemma. For any payoff matrix A and stochastic $\mathbf{y} \in \mathbb{R}^m$, $\min_{\mathbf{x}} \mathbf{y}^T A \mathbf{x} = \min_j \sum_{i=1}^m y_i a_{i,j}$. And for any stochastic $\mathbf{x} \in \mathbb{R}^n$, $\max_{\mathbf{y}} \mathbf{y}^T A \mathbf{x} = \max_i \sum_{j=1}^n a_{i,j} x_j$,

Proof. Let $t = \min_j \sum_{i=1}^m y_i a_{i,j}$. We have that

$$\mathbf{y}^T A \mathbf{x} = \sum_{j=1}^n \sum_{i=1}^m y_i a_{i,j} x_j = \sum_{j=1}^n x_j \sum_{i=1}^m y_i a_{i,j} \ge \sum_{j=1}^n x_j t = t,$$

so $\min_{\mathbf{x}} \mathbf{y}^T A \mathbf{x} \ge t$. Furthermore, for any $j \in \{1, \ldots, n\}$,

$$\min_{\mathbf{x}} \mathbf{y}^T A \mathbf{x} \le \mathbf{y}^T A \mathbf{e}_{\mathbf{j}} = \sum_{i=1}^m y_i a_{i,j},$$

where $\mathbf{e}_{\mathbf{j}} \in \mathbb{R}^n$ is the *j*th standard basis vector. Hence, $\min_{\mathbf{x}} \mathbf{y}^T A \mathbf{x} \leq \min_j \mathbf{y}^T A \mathbf{e}_{\mathbf{j}} = t$ and the conclusion follows.

The proof of the second sentence is similar.

Theorem. For every payoff matrix A, $v_1(A) = v_2(A)$.

PROOF. Consider the following LP1:

Using the lemma, one can check that the maximum possible v_1 in this LP is exactly $v_1(A)$.

Similarly, $v_2(A)$ is the solution of the the following LP2:

Both these problems have feasible solutions (any pure strategies would do). Moreover, they are DUAL. This proves the theorem.