The following are some sample questions for exam 1. Some of these questions may appear on the exam 1. There will be more questions on the exam than I have listed here.

Question 1:

Write the definitions of the following terms:

- an indefinite matrix
- B(x,r), the open ball centered at $x \in \mathbb{R}^n$ with radius $r \in \mathbb{R}$ such that r > 0
- the function $f: \mathbb{R}^n \to \mathbb{R}$ is coercive

Question 2:

- (a) Complete the statement of Taylor's formula for real valued functions on \mathbb{R}^n .
 - Suppose that x^*, x are points in \mathbb{R}^n and that f(x) is a function from \mathbb{R}^n to \mathbb{R} with continuous first and second partial derivatives on some open set containing the line segment $[x^*, x] = \{w \in \mathbb{R}^n : w = x^* + t(x x^*); 0 \le t \le 1\}$ joining x^* and x. Then there exists
- (b) Let f(x) be a real valued convex function defined on a convex subset $C \subseteq \mathbb{R}^n$ and let $M \subseteq C$ be the set of local minimizers of f on C. Which of the following is true about the set M.
 - A. The set M is not empty.
 - B. Every point in M is a critical point of f.
 - C. Every point in M is a global minimizer of f on D.
 - D. For every $x \in M$, Hf(x) is defined and is positive semidefinite.
 - E. All of the above

Question 3:

Determine if the following matrix is positive/negative (semi)definite or indefinite (you must justify your answer):

$$\begin{pmatrix}
-4 & 0 & 1 \\
0 & -3 & 2 \\
1 & 2 & -5
\end{pmatrix}$$

Question 4:

Let $B \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ be fixed. Define $D = \{\mathbf{x} \in \mathbb{R}^n : B\mathbf{x} = \mathbf{b}\}$. Is D convex? (You must prove your answer is correct).

Question 5:

Find (local, global) minimizers and maximizers of the following function (you must justify your answers):

(a)
$$f(x,y) = 2x^2 - 4xy + 3y^2 - 6x - 12y$$
 for $(x,y) \in \mathbb{R}^2$

Question 6:

Determine whether the following function is convex, concave, strictly convex or strictly concave on $(x_1, x_2) \in \mathbb{R}^2$ (you must justify your answer):

$$f(x_1, x_2) = 3 + 3x_1 - 10x_2 + e^{(x_1^2 - 2x_1x_2 + 2x_2^2)}$$

A questions like the following will only be required for C14 students. It would be optional for C13 students

Question 7: (C14 required, C13 optional)

State and prove the theorem about coercive functions and global minimizers.