Math-484 Homework #3 (semidefinite matrices, convex sets/functions)

Due 10am Feb 13.

Write your name on your solutions and indicate if you are a C14 (4 credit hour) student.

1: Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x^3 + e^{3y} - 3xe^y.$$

Show that f has exactly one critical point and that this point is a local minimizer but not a global minimizer.

(a) Decide if the following matrix is (positive/negative, semi)definite:

$$A = \left(\begin{array}{ccc} -2 & 2 & 0\\ 2 & -2 & 0\\ 0 & 0 & -3 \end{array}\right)$$

(b) Decide for which $t \in \mathbb{R}$ is the following matrix is positive definite:

$$B = \left(\begin{array}{ccc} t & 1 & 0\\ 1 & t & 1\\ 0 & 1 & t \end{array}\right)$$

3: Let \mathcal{PS} be the set of all positive semidefinite definite $n \times n$ matrices in $\mathbb{R}^{n \times n}$. Use the definition of convexity to show that \mathcal{PS} is a convex set.

4: For $D \subseteq \mathbb{R}^n$ we define co(D) to be the intersection of all convex sets containing D. Prove Theorem 2.1.4: Let $D \subseteq \mathbb{R}^n$. Then co(D) coincides with the set C of all convex combinations of vectors from D.

Hint: Use the following steps.

- 1) Show that C is a convex set containing D.
- 2) Show that if B is a convex set containing D, then $C \subseteq B$ (Use a theorem for this step).
- 3) Conclude that co(D) = C.

5: Determine whether the functions are convex, concave, strictly convex or strictly concave on the specified sets:

- (a) $f(x) = \ln x$ for $x \in (0, +\infty)$
- (b) $f(x_1, x_2) = 5x_1^2 + 2x_1x_2 + x_2^2 x_1 + 2x_2 + 3$ for $(x_1, x_2) \in \mathbb{R}^2$ (c) $f(x_1, x_2) = (x_1 + 2x_2 + 1)^8 \ln((x_1x_2)^2)$ for $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 > x_2 > 1\}$
- (d) $f(x_1, x_2) = c_1 x_1 + c_2 / x_1 + c_3 x_2 + c_4 / x_2$ for $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0, x_2 > 0\}$, where c_1, c_2, c_3 , and c_4 are positive constants

1

6: C14 (four credit hour students) only Suppose that f is a function with continuous second partial derivatives on \mathbb{R}^n . Show that if there exists x^* such that the Hessian $Hf(x^*)$ of f at x^* is not positive semidefinite, then f is not convex.