Math-484 List of definitions and theorems

Material from previous exams may appear on this exam, but the focus will be on the material below.

Definitions (Midterm 4):

- duality gap page 209
- function $g^+(x)$ page 215
- absolute value penalty function page 217
- penalty parameter page 217
- Courant-Beltrami penalty function page 219
- generalized penalty function page 223
- generalized penalty objective function page 223
- Definition of $L^{\epsilon}(x,\lambda), P^{\epsilon}, MP^{\epsilon}, DP^{\epsilon}, MD^{\epsilon}$ page 230
- Definition of surface, normal space $N(\mathbf{x}^0)$ and tangent space $T(\mathbf{x}^0)$ to S at \mathbf{x}^0 (Theorem
- 7.1.1) page 241
- Definition of path in a surface S (Theorem 7.1.3) page 243
- Definition of a regular point (Theorem 7.1.3) page 246
- Definition of Lagrange multipliers and the Lagrange multiplier conditions page 248

Theorems and statements (Midterm 4):

- Description of first partial derivatives of $[g^+(x)]^2$ (Theorem 6.1.3) page 219

- Describe the penalty function method (6.2.1) page 220

- Description of the sequence of global minimizers of $P_k(x)$ and its convergent subsequence (Theorem 6.2.3) page 221-222

- No duality gap for a consistent convex program with a coercive objective function. (Theorem 6.3.1) page 227

- How to modify any convex function to a coercive one? (why it is coercive?) (with proof) page 229

- The relations between $P^{\epsilon}, MP^{\epsilon}, DP^{\epsilon}, MD^{\epsilon}$? (Theorem 6.3.2) page 230

- Relationship between $MP = \inf_{\varepsilon>0} \{MD^{\varepsilon}\}$? (with proof) (Theorem 6.3.4) page 232

- What can you say when (P) is superconsistent and $MP > -\infty$? (Theorem 6.3.5) page 232-233

- What is the relationship between vectors in $T(\mathbf{x}^*)$ and paths in S. Theorem 7.1.5 page 244

- What can you say about a local minimizer of a program that is also a regular point. *The*-orem 7.2.1 page 244