Two phase simplex

► Suppose we are given the problem

$$\mathsf{Minimize}\; z = -x_1 + x_2 - x_3$$

subject to

- ▶ This system is solved with respect to x_4 , x_5 , and x_6 , but the obtained basic solution is not feasible. So, we will look for a feasible solution by solving another linear program obtained as follows.
- ▶ Multiply the last two equations by -1 in order to get positive RHS, then add to either of these equations its own variable and switch the LHS with the RHS:

- Note that a basic feasible solution of system (2) with $x_7 = x_8 = 0$ would be a basic feasible solution of (3).
- So, in search of such solutions, we will attempt to minimize $\xi = x_7 + x_8$ under conditions (2).
- We have added x_7 and x_8 so that we have the following basic feasible solution of (2): $x_1 = x_2 = x_3 = x_5 = x_6 = 0$, $x_4 = 4$, $x_7 = 5$, $x_8 = 1$.
- ▶ We could also add a variable for the first row, but we don't have to since it is already solved for x₄.
- ► Consider the tableau corresponding to our new linear program:

		x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>x</i> ₈
$-\xi$	0	0	0	0	0	0	0	1	1
<i>X</i> ₄	4	2	-1	2	1	0	0	0	0
<i>X</i> 7	5	-2	3	-1	0	-1	0	1	0
<i>X</i> 8	1	1	-1	2	0	0	-1	0	1

• We cannot yet start pivoting, since the coefficients at basic variables x_7 and x_8 in Row 0 are non-zeros. Excluding x_7 and x_8 from Row 0, we get...

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>x</i> ₈
$-\xi$	-6	1	-2	-1	0	1	1	0	0
<i>X</i> ₄	4	2	-1	2	1	0	0	0	0
<i>X</i> 7	5	-2	3	-1	0	-1	0	1	0
<i>X</i> 8	1	1	-1	2	0	0	-1	0	1

Choose Column x_3 as the pivot column. Then the pivot row will be Row 3:

		x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>x</i> ₈
$-\xi$	-11/2	3/2	-5/2	0	0	1	1/2	0	1/2
<i>X</i> 4	3	1	0	0	1	0	1	0	-1
<i>X</i> 7	11/2	-3/2	5/2	0	0	-1	-1/2	1	1/2
<i>X</i> 3	1/2	1/2	-1/2	1	0	0	-1/2	0	1/2

Now we pivot on column x_2 and Row 2:

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>x</i> ₈
$-\xi$	0	0	0	0	0	0	0	1	1
<i>X</i> ₄	3	1	0	0	1	0	1	1	-1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5	2/5	1/5
<i>X</i> 3	16/10	2/10	0	1	0	-1/5	-6/10	1/5	6/10

- ► This is an optimal tableau for the auxiliary problem
- ▶ If the value of the objective function at the optimum was greater than 0, then ...
- we can could conclude that the original problem was infeasible.
- ▶ But it is 0, so we have found a bfs of the original problem
- ▶ Delete the columns corresponding to x_7 and x_8 , and replace the original objective function.
- ▶ One special case that could happen:
 - ▶ If the optimum to the auxiliary problem is degenerate, an artificial variable, x₇ or x₈, could still be in the basis.
 - ▶ To drive the artificial variables out of the basis if row i is solved for, say x_7 (so x_7 is still in the basis), then pivot on entry (i,j) for any of the original columns j such that $a_{i,j} \neq 0$ (even if $\overline{c}_j > 0$ or $a_{i,j} < 0$).
 - ▶ Repeat until no artifical variables remain in the basis. (See page 56 of the book).

► Here is the new tableau - the top row corresponds exactly to the original objective function

		x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
-z	0	-1	1	-1	0	0	0
<i>X</i> ₄	3	1	0	0	1	0	1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5
<i>X</i> 3	16/10	2/10	0	1	0	-1/5	-6/10

ightharpoonup Excluding basic variables x_2 and x_3 from Row 0, we get

		<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	X4	<i>X</i> 5	<i>x</i> ₆
-z	-3/5	-1/5	0	0	0	1/5	-2/5
<i>X</i> ₄	3	1	0	0	1	0	1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5
<i>X</i> 3	16/10	2/10	0	1	0	-1/5	-6/10

► Choose *x*₆ as the pivot column. Then the pivot row is Row 1. After the pivot we have

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
-z	3/5	1/5	0	0	2/5	1/5	0
<i>x</i> ₆	3	1	0	0	1	0	1
x_2	14/5	-2/5	1	0	1/5	-2/5	0
<i>X</i> 3	17/5	4/5	0	1	3/5	-1/5	0

This tableau corresponds to the basic solution $x_5 = x_1 = x_4 = 0$, $x_2 = 14/5$, $x_3 = 17/5$, $x_6 = 3$, which gives -z = 3/5. Since we do not have negative entries in Row 0, this solution is optimal.

Example 2

Minimize
$$z = x_1 - x_2 - x_3$$

subject to

$$2x_1 +4x_2 +4x_3 = 4
3x_1 -x_2 -2x_3 = 6
x_1, x_2, x_3 \ge 0.$$
(3)

- ▶ In general, it is hard to find a feasible basis, but for this small example it is not too difficult.
- ▶ Both (1,2) and (1,3) are feasible bases, with bfs $(2,0,0)^T$. Suppose you didn't notice this, so you do the first phase of two phase simplex.
- Add artificial variables x_4 and x_5 and use the objective function $\xi = x_4 + x_5$.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5
$-\xi$	0	0	0	0	1	1
<i>X</i> ₄	4	2	4	4	1	0
<i>X</i> 5	6	3	-1	-2	0	1

Before we start simplex, we exclude the basic variables x_4 and x_5 from the top row. Which gives

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5
$-\xi$	-10	-5	-3	-2	0	0
<i>X</i> ₄	4	2	4	4	1	0
<i>X</i> 5	6	3	-1	-2	0	1

We following Bland's rule which gives pivot column x_1 and pivot row 1. Pivoting gives

		<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
$-\xi$	0	0	7	8	5/2	0
x_1	2	1	2	2	1/2	0
<i>X</i> 5	0	0	-7	-8	-3/2	1

We seem to be done with the first phase and $\xi = 0 = x_4 = x_5$ is zero in the current bfs $(2,0,0,0,0)^T$, so $(2,0,0)^T$ is a bfs for the original problem.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5
$-\xi$	0	0	7	8	5/2	0
x_1	2	1	2	2	1/2	0
<i>X</i> 5	0	0	-7	-8	-3/2	1

The issue here is that the artifical variable x_5 is still in the basis. To move x_5 out of the basis, we only have to pivot on some non-zero entry in the row 2 that is in a column corresponding to a variable that is not artificial. We could pick either entry $a_{2,2}$ or $a_{2,3}$. We choose $a_{2,2}$ arbitrarily, which gives.

		<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
$-\xi$	0	0	0	0	1	1
x_1	2	1	0	-2/7	1/14	2/7
<i>x</i> ₂	0	0	1	8/7	3/14	-1/7

We can start the second phase by removing the artificial variables and using the original objective function.

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3
-z	0	1	-1	-1
x_1	2	1	0	-2/7
<i>x</i> ₂	0	0	1	8/7

We have to exclude the basic variables from the top row. This gives.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
-z	-2	0	0	3/7
x_1	2	1	0	-2/7
<i>x</i> ₂	0	0	1	8/7

Since $a_{0,1}$, $a_{0,2}$ and $a_{0,3}$ are all non-negative this $(2,0,0)^T$ is an optimal basic feasible solution to the original problem.