Simplex first example

Suppose we are given the problem

Minimize $z = -x_1 + 2x_2 - x_3$

subject to

Rewrite the objective function as a new equation with the new variable z and switch the LHS with the RHS.

Note this system is solved for the variables x_4 and x_5 . Set $x_0 = -z$.

We have the following initial tableau:

(Note: in the future we will not include the x_0 column in the tableau, so we refer to the entries in the x_1 column as

 $a_{0,1}, \ldots, a_{m,1}$, the x_2 column as $a_{0,1}, \ldots, a_{m,2}$, etc.):

		<i>x</i> 0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
$x_0 = -z$	0	1	-1	2	-1	0	0
<i>x</i> 4	10	0	1	-2	1	1	0
<i>x</i> 5	6	0	2	-3	-1	0	1

The tableau is solved for the ordered basis B = (4, 5) and basic feasible solution $x = (0, 0, 0, 10, 6)^{T}$.

		<i>x</i> ₀	x ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> 4	<i>X</i> 5
$x_0 = -z$	0	1	-1	2	-1	0	0
<i>x</i> ₄	10	0	1	-2	1	1	0
<i>X</i> 5	6	0	2	-3	-1	0	1

1. Check whether there are negative entries in the top row other than the 0th entry.

- 2. Choose ANY such negative entry, for example x₁. It's corresponding column is called the *pivot column*.
- 3. Both entries in this column are positive, so we must compare ratios to determine the pivot column.
- 4. The ratio $a_{1,0}/a_{1,1} = 10/1$ is greater than the ratio $a_{2,0}/a_{2,1} = 6/2$, so the *pivot row* will be Row 2. The entry in the pivot row (row 2) and pivot column (column 1) is called the *pivot entry*.
- 5. Pivoting on this pivot entry will solve the tableau for the basis where 5 is replaced with 1, so the new basis will be (4, 1).

		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> 4	<i>X</i> 5
$x_0 = -z$	3	1	0	1/2	-3/2	0	1/2
<i>x</i> ₄	7	0	0	-1/2	3/2	1	-1/2
<i>x</i> ₁	3	0	1	-3/2	-1/2	0	1/2
1. This tableau corresponds to basis $B = (4, 1)$ and bfs							

- 1. This tableau corresponds to basis B = (4, 1) and bis $x = (3, 0, 0, 7, 0)^T$.
- 2. The tableau implies that $z = -3 + 1/2 \cdot x_2 3/2 \cdot x_3 + 1/2 \cdot x_5$, so z = -3 for the current bfs, and this solution is better than the previous one.
- 3. The only negative entry in the 0th row is the coefficient at x_3 , so, the pivot column is the x_3 column.
- 4. In this column, there is only one positive entry, so we pivot on this entry, which will replace 4 with 3 in the basis.

		<i>x</i> 0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
$x_0 = -z$	10	1	0	0	0	1	0
<i>x</i> 3	14/3	0	0	-1/3	1	2/3	-1/3
<i>x</i> ₁	16/3	0	1	-5/3	0	1/3	1/3

- 1. This tableau corresponds to the basis (3,1), bfs $x = (16/3, 0, 14/3, 0, 0)^T$, and implies $z = -10 + x_4$.
- 2. Note that $z = -10 + x_4$ implies that $z \ge -10$, because for any feasible solution $x_4 \ge 0$, so the current bfs is an optimum and the algorithm terminates.
- 3. In general, the simplex algorithm terminates when all of the entries, except possibly the 0th entry, in the top row are non-negative.