Suppose we are given the problem

Minimize
$$z = -19x_1 - 13x_2 - 12x_3 - 17x_4$$

subject to

$$\begin{cases}
3x_1 + 2x_2 + x_3 + 2x_4 = 225, \\
x_1 + x_2 + x_3 + x_4 = 117, \\
4x_1 + 3x_2 + 3x_3 + 4x_4 = 420 \\
x_1, x_2, x_3, x_4 \ge 0.
\end{cases} (1)$$

- ▶ There is no obvious bfs, so we use the revised two phase simplex method
- ▶ To start the first phase, we add to each of the equations its own variable y_i and consider the auxiliary problem of minimizing $\xi = y_1 + y_2 + y_3$ (we think of $y_1 = x_5$, $y_2 = x_6$ and $y_3 = x_7$)
- ► Throughout the first phase, c^T and A refer to the cost vector and matrix of the first phase linear program, not the original LP (1).
- In the second phase, c^T and A refer to the cost vector and matrix of the original LP (1).
- ► This is the tableau corresponding to the phase one LP

		x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
$-\xi$	0	0	0	0	0	1	1	1
y_1	225	3	2	1	2	1	0	0
<i>y</i> ₂	117	1	1	1	1	0	1	0
<i>y</i> ₃	420	4	3	3	4	0	0	1

- ▶ Since $b \ge 0$, row one is solved y_1 , row two is solved y_2 , and row three is solved y_3 , we can use (5,6,7) as our ordered basis.
- ▶ Note that we do not exclude y_1, y_2 and y_3 from the top row.
- ▶ Our carry matrix should have the form $\left[\begin{array}{c|c} -\pi^T b & -\pi^T \\ \hline A_B^{-1} b & A_B^{-1} \end{array} \right]$.
- Note that $A_B^{-1} = A_B$ is the identity matrix. We compute $\pi^T = c_B^T A_B^{-1} = c_B^T = [1, 1, 1]$ and $A_B^{-1} b = b = [225, 117, 420]^T$.
- We have $\pi^T b = [1, 1, 1][255, 117, 420]^T = 225 + 117 + 420 = 762$.
- ▶ The following is then our CARRY-0 matrix

CARRY-0	$-\xi$	-762	-1	-1	-1
	y_1	225	1	0	0
	<i>y</i> ₂	117	0	1	0
	<i>y</i> 3	420	0	0	1

CARRY-0	$-\xi$	-762	-1	-1	-1
	y_1	225	1	0	0
	y_2	117	0	1	0
	<i>y</i> ₃	420	0	0	1

- ▶ We compute $\overline{c}_1 = c_1 \pi^T A_1 = 0 + [-1, -1, -1][3, 1, 4]^T = -8 < 0$, so we pivot on column 1.
- We compute $A_B^{-1}A_1 = A_1 = [3, 1, 4]^T$,
- ▶ So, we append column $[-8,3,1,4]^T$ to CARRY-0 and pivot. We do the normal ratio test to the select the pivot row, i.e. we pick row one as the pivot row since 225/3 < 117/1 and 225/3 < 420/4.
- ▶ After pivoting, we get CARRY-1

			<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
	$-\xi$	-162	5/3	-1	-1
CARRY-1	x_1	75	1/3	0	0
	<i>y</i> ₂	42	-1/3	1	0
	V3	120	-4/3	0	1

- Now we calculate $\overline{c}_2 = c_2 \pi^T A_2 = 0 + [5/3, -1, -1][2, 1, 3]^T = -2/3$ (we do not calculate \overline{c}_1 , because x_1 is in the basis, so we know $\overline{c}_1 = 0$.)
- ▶ Since $\overline{c}_2 = -2/3 < 0$, we pivot on column 2.
- ► We compute $A_B^{-1}A_2 = \begin{pmatrix} 1/3 & 0 & 0 \\ -1/3 & 1 & 0 \\ -4/3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/3 \\ 1/3 \end{pmatrix}$.
- ▶ Adding column $[-2/3, 2/3, 1/3, 1/3]^T$ to CARRY-1 and pivoting on the first row we get CARRY-2:

CARRY-2
$$\begin{pmatrix} -\xi & -87 & 2 & -1 & -1 \\ x_2 & 225/2 & 1/2 & 0 & 0 \\ y_2 & 9/2 & -1/2 & 1 & 0 \\ y_3 & 165/2 & -3/2 & 0 & 1 \end{pmatrix}$$

- ▶ Since x_2 is in the basis and x_1 was removed from the basis on the previous step, we can start with column 3. (On the **next** iteration, we will **have to check** the x_1 column again.)
- ▶ We compute $\overline{c}_3 = c_3 \pi^T A_3 = 0 + [2, -1, -1][1, 1, 3]^T = -2 < 0$, so we pivot on column 3.
- Now we compute $A_B^{-1}A_3 = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 3/2 \end{pmatrix}$.
- ▶ Adding column $[-2, 1/2, 1/2, 3/2]^T$ to CARRY-2 and pivoting on the second row we get CARRY-3:

- ▶ We know must check column 1 again, so we compute $\overline{c}_1 = c_1 \pi^T A_1 = 0 + [0, 3, -1][3, 1, 4]^T = -1 < 0$, so we pivot on column 1
- ▶ We add column $[-1, 2, -1, 1]^T$ to CARRY-3 and pivot on the first row to get CARRY-4:

CARRY-4	$-\xi$	-15	1/2	5/2	-1
	x_1	54	1/2	-1/2	0
	<i>X</i> 3	63	-1/2	3/2	0
	<i>y</i> ₃	15	-1/2	-5/2	1

- Note that x_1 entered the basis, then left it, and now entered it again.
- Since x_1 and x_3 are in the basis and x_2 was just removed from the basis on the last iteration, we can start with column 4: $\overline{c}_4 = c_4 \pi^T A_4 = 0 + [1/2, 5/2, -1][2, 1, 4]^T = -1/2 < 0$. So we pivot on column 4

► Adding column $[-1/2, 1/2, 1/2, 1/2]^T$ to the last tableau and pivoting on the last row we get CARRY-5:

CARRY-5
$$\begin{pmatrix} -\xi & 0 & 0 & 0 & 0 \\ x_1 & 39 & 1 & 2 & -1 \\ x_3 & 48 & 0 & 4 & -1 \\ x_4 & 30 & -1 & -5 & 2 \end{pmatrix}$$

- Since $\xi = 0$ and y_1, y_2 and y_3 are not in the basis, we have found a feasible ordered basis for the original problem B = (1, 3, 4).
- ▶ We replace the top row with $[-\pi^T b| \pi^T]$, where $\pi^T = c_B^T A_B^{-1}$ is computed using c^T from the original LP (1).
- We compute (note the order $c_B^T = [c_1, c_3, c_4] = [-19, -12, -17]$ must match the order in the basis heading x_1, x_3, x_4)

$$\pi^T = c_B^T A_B^{-1} = [-19, -12, -17] \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ -1 & -5 & 2 \end{pmatrix} = [-2, -1, -3].$$

- ► Then we compute $\pi^T b = [-2, -1, -3][255, 117, 420]^T = -1827$.
- ► Hence, our CARRY-6 is

- The only variable not in the basis is x_2 , so we compute $\overline{c}_2 = c_2 \pi^T A_2 = -13 + [2,1,3][2,1,3]^T = 1 \ge 0$
- Since it is not negative, we conclude that the optimal value is -1827 attained at $x = [39, 0, 48, 30]^T$.