Math 482 HW3

Name: _

Due Friday, February 12, 2016

All students (either in section E13 or E14) must do all four problems. Note that the third problem counts as two problems.

- 1. Solve the LP in Example 2.7 (pages 51–52) of the book using Bland's anticycling algorithm (see section 2.7).
- 2. For the previous problem, find the matrix by which we have to pre-multiply the original tableau in order to get the final tableau. In other words, if T is the initial tableau and \tilde{T} is the final tableau, then find the matrix X such that $XT = \tilde{T}$. You should use the fact that $XT_i = \tilde{T}_i$ where T_i is column i of T and \tilde{T}_i is column i of \tilde{T} .
- 3. This problem counts as two problems. You must show the steps of the simplex procedure on this problem, but you are encouraged to use a linear program solver to check your answers to this problem. Please make sure the first phase is correct before proceeding to the second stage.

Introduce 3 artificial variables and solve with two-phase simplex algorithm the LP represented by the tableau below.

		x_1	x_2	x_3	x_4	x_5
-Z	0	4	8	14	2	10
	14	2	2	4	2	4
	12	2	4	6	2	2
	8	2	2	2	4	2

4. You can use a calculator or computer algebra system to help with this problem, but you must show all your steps.

Suppose that at a stage of the simplex algorithm, we have the following tableau T:

		x_1	x_2	x_3	x_4	x_5	x_6
-z	8	0	8/3	-11	0	4/3	0
x_1	4	1	2/3	0	0	4/3	0
x_4	2	0	-7/3	3	1	-2/3	0
x_6	2	0	-2/3	-2	0	2/3	1

The inverse of the current basis is

$$A_B^{-1} = [A_1, A_4, A_6]^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 2 & 1 \end{pmatrix}$$

and

$$c_B^T = [c_1, c_4, c_6] = [-1, -3, 1].$$

Find vectors c and b and the matrix A that correspond to the original linear program.