Suppose we are given the problem

Minimize
$$z = 2x_1 + 3x_2 + 4x_3 + 5x_4$$

- ▶ Do we add slack variables or surplus variables?
- ► Do we automatically have a basic feasible solution after adding surplus variables?
- ▶ We could do two phase simplex,
- but since the coefficient in the objective function are positive, we can use dual simplex.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
-z	0	2	3	4	5	0	0	0
<i>X</i> ₅	-10	-1	1	-1	1	1	0	0
<i>x</i> ₆	-6	-1	2	-3	4	0	1	0
<i>X</i> 7	-15	-3	4	-5	6	0	0	1

- After adding surplus variables and multiplying the equations by -1 we have the that rows 1, 2 and 3 are solved for x_5 , x_6 and x_7 , respectively.
- ▶ The ordered basis is (5,6,7), but it is NOT a feasible basis since $A_B^{-1}b = [-10,-6,-15]^T$ has negative entries. It is a dual feasible basis, because $\overline{c}^T \geq 0^T$, so we can use the dual simplex algorithm.
- ▶ In dual simplex, we pick the pivot row first by selecting a row with a negative entry in column 0.
- ▶ Therefore, any row in this tableau is acceptable. We pick Row 1.
- ▶ We now pick the pivot column so that $a_{0,0}$ does not increase and the top row remains positive. This means that if r is the pivot row, we select column s so that $a_{r,s} < 0$ and, subject to this, $a_{0,s}/a_{r,s}$ is as large as possible.
- ▶ Since the ratio for column x_1 is $a_{0,1}/a_{1,1} = \frac{2}{-1} = -2$ and the ratio for column x_3 is $a_{0,3}/a_{1,3} = \frac{4}{-1} = -4$, we pivot on $a_{1,1}$.

		x_1	<i>x</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
-z	-20	0	5	2	7	2	0	0
x_1	10	1	-1	1	-1	-1	0	0
<i>x</i> ₆	4	0	1	-2	3	-1	1	0
<i>X</i> ₇	15	0	1	-2	3	-3	0	1

- ▶ Now every $a_{i,0}$ for $i \in [m]$ is nonnegative. So, the tableau is optimal.
- ▶ But suppose that the boss adds a new restriction:

$$x_1 + 2x_2 + 3x_3 - 4x_4 < 8$$
.

▶ With the dual simplex, we do not need to start from scratch. We simply add the new row and one more column to our final tableau.

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	X7	<i>X</i> 8
-z	-20	0	5	2	7	2	0	0	0
x_1	10	1	-1	1	-1	-1	0	0	0
<i>x</i> ₆	4	0	1	-2	3	-1	1	0	0
<i>X</i> ₇	15	0	1	-2	3	-3	0	1	0
<i>X</i> 8	8	1	2	3	-4	0	0	0	1

- ► This tableau has a new row for the new equation and also a new slack
- ▶ We have to make sure that this tableau is solved for x_1 , x_6 and x_7 , so we must exclude them from the row we just added.

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>X</i> 8
-z	-20	0	5	2	7	2	0	0	0
x_1	10	1	-1	1	-1	-1	0	0	0
x_6	4	0	1	-2	3	-1	1	0	0
<i>X</i> 7	15	0	1	-2	3	-3	0	1	0
<i>X</i> 8	-2	0	3	2	-3	1	0	0	1

- ▶ Notice how if in the last row we did not have −3, then the LP would be infeasible, because the left hand size of the equation would be less than zero and the right hand size would always be at least zero.
- ▶ Since there $a_{4,0} = -2$ and $a_{i,0} \ge 0$ for all $i \in [3]$, we must pivot on row 4. We are then forced to pivot on column x_4 because $a_{4,4} = 3$ is the only negative entry in row 4.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>X</i> ₈
-z	-74/3	0	12	20/3	0	13/3	0	0	7/3
x_1	32/3	1	-2	1/3	0	-4/3	0	0	-1/3
<i>x</i> ₆	2	0	4	0	0	0	1	0	1
<i>X</i> 7	13	0	4	0	0	-2	0	1	1
x_4	2/3	0	-1	-2/3	1	-1/3	0	0	-1/3

- ► Are we now done?
- ▶ Why is the optimal value of this LP (74/3) higher than the optimal value of the previous LP (20)?