

1		N.	24-	24-	N.	16	N/-	26	24-
		<i>x</i> 1	<i>x</i> ₂	<i>X</i> 3	X4	<i>X</i> 5	<i>x</i> 6	X7	<i>x</i> 8
$-\xi$	-6	1	-2	-1	0	1	1	0	0
<i>x</i> 4	4	2	-1	2	1	0	0	0	0
<i>X</i> 7	5	-2	3	$^{-1}$	0	-1	0	1	0
<i>x</i> 8	1	1	-1	2	0	0	-1	0	1
C	hoose C	olumn	x_2 as the	ne pivot	colum	n. Thei	the pi	vot row	will b

Choose Column x_3 as the pivot column. Then the pivot row will b Row 3:

		<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8
$-\xi$	-11/2	3/2	-5/2	0	0	1	1/2	0	1/2
<i>X</i> 4	3	1	0	0	1	0	1	0	-1
<i>x</i> 7	11/2	-3/2	5/2	0	0	$^{-1}$	-1/2	1	1/2
<i>x</i> 3	1/2	1/2	-1/2	1	0	0	-1/2	0	1/2

Now we pivot on column x_2 and Row 2:

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8	
$-\xi$	0	0	0	0	0	0	0	1	1	
<i>x</i> ₄	3	1	0	0	1	0	1	1	-1	
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5	2/5	1/5	
<i>x</i> 3	16/10	2/10	0	1	0	-1/5	-6/10	1/5	6/10	

- This is an optimal tableau for the auxiliary problem
- ► If the value of the objective function at the optimum was greater than 0, then ...
- ▶ we can could conclude that the original problem was infeasible.
- But it is 0, so we have found a bfs of the original problem
- ▶ Delete the columns corresponding to *x*₇ and *x*₈, and replace the original objective function.
- One special case that could happen:
 - ▶ If the optimum to the auxiliary problem is degenerate, an artificial variable, x₇ or x₈, could still be in the basis.
 - To drive the artificial variables out of the basis if row i is solved for, say x₇ (so x₇ is still in the basis), then pivot on entry (i, j) for any of the original columns j such that a_{i,j} ≠ 0 (even if c̄_j > 0 or a_{i,j} < 0).</p>
 - Repeat until no artifical variables remain in the basis. (See page 56 of the book).

 Here is the new tableau - the top row corresponds exactly to the original objective function

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
-z	0	-1	1	-1	0	0	0
<i>x</i> ₄	3	1	0	0	1	0	1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5
<i>x</i> 3	16/10	2/10	0	1	0	-1/5	-6/10

▶ We solve for the basis (4,2,3) by excluding the basic variables x₂ and x₃ from Row 0, we get

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> 6
-z	-3/5	-1/5	0	0	0	1/5	-2/5
<i>X</i> 4	3	1	0	0	1	0	1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5
<i>x</i> 3	16/10	2/10	0	1	0	-1/5	-6/10

► Choose x₆ as the pivot column. Then the pivot row is Row 1. After the pivot we have

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6
-z	3/5	1/5	0	0	2/5	1/5	0
x ₆	3	1	0	0	1	0	1
<i>x</i> ₂	14/5	-2/5	1	0	1/5	-2/5	0
<i>x</i> 3	17/5	4/5	0	1	3/5	-1/5	0

This tableau corresponds to the basic solution $x_5 = x_1 = x_4 = 0$, $x_2 = 14/5$, $x_3 = 17/5$, $x_6 = 3$, which gives -z = 3/5. Since we do not have negative entries in Row 0, this solution is optimal.

Example 2

Minimize $z = x_1 - x_2 - x_3$

subject to

- In general, it is hard to find a feasible basis, but for this small example it is not too difficult.
- ▶ Both (1,2) and (1,3) are feasible bases, with bfs (2,0,0)^T. Suppose you didn't notice this, so you do the first phase of two phase simplex.
- Add artificial variables x_4 and x_5 and use the objective function $\xi = x_4 + x_5$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5
	$-\xi$	0	0	0	0	1	1
x_5 6 3 -1 -2 0 1		4	2	4	4	1	0
	X_5	6	3	-1	-2	0	1

Before we start simplex, we exclude the basic variables x_4 and x_5 from the top row. Which gives

		x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> 4	<i>x</i> 5
$-\xi$	-10	-5	-3	-2	0	0
<i>x</i> ₄	4	2	4	4	1	0
x_5	6	3	-1	-2	0	1

We following Bland's rule which gives pivot column x_1 and pivot row 1. Pivoting gives

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
$-\xi$	0	0	7	8	5/2	0
x_1	2	1	2	2	1/2	0
<i>x</i> 5	0	0	-7	-8	-3/2	1

We seem to be done with the first phase and $\xi = 0 = x_4 = x_5$ is zero in the current bfs $(2, 0, 0, 0, 0)^T$, so $(2, 0, 0)^T$ is a bfs for the original problem.

		x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	x_5
$-\xi$	0	0	7	8	5/2	0
x_1	2	1	2	2	1/2	0
x_5	0	0	-7	-8	-3/2	1

The issue here is that the artifical variable x_5 is still in the basis. To move x_5 out of the basis, we only have to pivot on some non-zero entry in row 2 that is in a column corresponding to a variable that is not artificial. We could pick either entry $a_{2,2}$ or $a_{2,3}$. We choose $a_{2,2}$ arbitrarily, which gives.

		x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
$-\xi$	0	0	0	0	1	1
<i>x</i> ₁	2	1	0	-2/7	1/14	2/7
<i>x</i> ₂	0	0	1	8/7	3/14	-1/7

We can start the second phase by removing the artificial variables and using the original objective function.

		x_1	<i>x</i> ₂	<i>x</i> ₃
- <i>z</i>	0	1	-1	-1
x_1	2	1	0	-2/7
<i>x</i> ₂	0	0	1	8/7

We solve for the basis $\left(1,2\right)$ by excluding the basic variables from the top row to get

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
-z	-2	0	0	3/7
x_1	2	1	0	-2/7
<i>x</i> ₂	0	0	1	8/7

Since $\overline{c}_1 = a_{0,1}$, $\overline{c}_2 = a_{0,2}$ and $\overline{c}_3 = a_{0,3}$ are all non-negative $(2,0,0)^T$ is an optimal basic feasible solution to the original problem.