Theorem 1. Suppose we have the following LP in standard form

(P)
$$\min \mathbf{c}^T \mathbf{x} \ s.t \ \mathbf{A} \mathbf{x} = \mathbf{b} \ and \ \mathbf{x} \ge \mathbf{0},$$

and that $B = (j_1, \ldots, j_m)$ is a basis.

- (a) The vector \mathbf{x} defined by $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$ and $x_j = 0$ for every nonbasic variable x_j is the unique basic solution associated with B. In particular, B is a feasible basis when $\mathbf{A}_B^{-1}\mathbf{b} \geq \mathbf{0}$.
- (b) If B is a feasible basis and the relative cost vector is non-negative (i.e. $\mathbf{\bar{c}}^T \geq \mathbf{0}^T$), then x is an optimum for (P).
- (c) If B is a feasible basis and there exists a variable x_{j_0} such that the relative cost of x_{j_0} is negative (i.e. $\overline{c}_{j_0} < 0$) and $\mathbf{A}_B^{-1}\mathbf{A}_{j_0} \leq \mathbf{0}$, then (P) is unbounded.

Proof. We begin by proving (a). By the definition, \mathbf{x} is a basic solution associated with the basis B if and only if $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $x_j = 0$ for every nonbasic variable x_j . Using these two facts we have that

$$\mathbf{b} = \mathbf{A}\mathbf{x}$$

= $\mathbf{A}_1 x_1 + \dots + \mathbf{A}_n x_n$
= $\mathbf{A}_{j_1} x_{j_1} + \dots + \mathbf{A}_{j_m} x_{j_m}$
= $\left(\mathbf{A}_{j_1} \mid \dots \mid \mathbf{A}_{j_m} \right) \begin{pmatrix} x_{j_1} \\ \vdots \\ x_{j_m} \end{pmatrix}$
= $\mathbf{A}_B \mathbf{x}_B$.

Furthermore, because B is a basis, \mathbf{A}_B is an invertible matrix. This implies that $\mathbf{A}_B \mathbf{x}_B = \mathbf{b}$ if and only if $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$. Therefore, \mathbf{x} is a basic solution associated with the basis B if and only if $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$ and $x_j = 0$ for every nonbasic variable x_j . This proves (a).

To prove (b), first note that, since $x_j = 0$ for every nonbasic variable x_j ,

(*)

$$\mathbf{c}^{T}\mathbf{x} = c_{1}x_{1} + \dots c_{n}x_{n}$$

$$= c_{j_{1}}x_{j_{1}} + \dots c_{j_{m}}x_{j_{m}}$$

$$= \left(c_{j_{1}}, \dots, c_{j_{m}} \right) \begin{pmatrix} x_{j_{1}} \\ \vdots \\ x_{j_{m}} \end{pmatrix}$$

$$= \mathbf{c}_{B}^{T}\mathbf{x}_{B}.$$

Now let \mathbf{x}' be an arbitrary feasible solution to (P). We will show that $\mathbf{c}^T \mathbf{x}' \ge \mathbf{c}^T \mathbf{x}$ which will prove (b). By the definition of a feasible solution, we have that $\mathbf{A}\mathbf{x}' = \mathbf{b}$ and $\mathbf{x}' \ge \mathbf{0}$. Using these two facts, the assumption that $\mathbf{\bar{c}}^T \ge \mathbf{0}^T$ and that fact that, by (a), $\mathbf{x}_B = \mathbf{A}_B^{-1}b$, we can

compute that

$$0 \leq \overline{\mathbf{c}}^T \mathbf{x}'$$

= $(\mathbf{c}^T - \mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{A}) \mathbf{x}'$
= $\mathbf{c}^T \mathbf{x}' - (\mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{A}) \mathbf{x}'$
= $\mathbf{c}^T \mathbf{x}' - \mathbf{c}_B^T \mathbf{A}_B^{-1} (\mathbf{A} \mathbf{x}')$
= $\mathbf{c}^T \mathbf{x}' - \mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{b}$
= $\mathbf{c}^T \mathbf{x}' - \mathbf{c}_B^T \mathbf{x}_B$,

This, with (*), gives us that

$$\mathbf{c}^T \mathbf{x}' \geq \mathbf{c}_B^T \mathbf{x}_B = \mathbf{c}^T \mathbf{x},$$

which proves (b).

Finally, we prove (c). First, recall that \mathbf{x} is a feasible solution. We will construct \mathbf{y} such that Ay = 0, $y \ge 0$ and $c^T y < 0$. This with question 4 on homework assignment 1, will prove (c). First note that x_{i_0} cannot be a basic variable, because for every $i \in [m]$, the relative cost of the basic variable x_{j_i} is

$$\bar{c}_{j_i} = c_{j_i} - \mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{A}_{j_i} = c_{j_i} - \mathbf{c}_B^T (\mathbf{A}_B^{-1} \mathbf{A}_{j_i}) = c_{j_i} - (c_{j_1}, \dots, c_{j_m}) \mathbf{e}_i = c_{j_i} - c_{j_i} = 0,$$

and $\bar{c}_{j_0} < 0$ by assumption. Here we used that fact that \mathbf{A}_{j_i} is the *i*th column of \mathbf{A}_B , so the product $\mathbf{A}_B^{-1} \mathbf{A}_{j_i}$ must be the *i*th standard basis vector which we denote by \mathbf{e}_i . Therefore, we can set the variables y_{j_1}, \ldots, y_{j_m} of **y** by $\mathbf{y}_B = -\mathbf{A}_B^{-1}\mathbf{A}_{j_0}$ and set $y_{j_0} = 1$ without conflict. We set the entries in **y** that we have not specified to 0, i.e. we set $y_j = 0$ for every nonbasic variable x_j that is not x_{j_0} . Note that $\mathbf{y} \geq \mathbf{0}$ because $\mathbf{A}_B^{-1}\mathbf{A}_{j_0} \leq \mathbf{0}$ by assumption. We now show that \mathbf{y} is in the null space of \mathbf{A} with the following computation

$$Ay = A_B y_B - A_{j_0} y_{j_0} = A_B (A_B^{-1} A_{j_0}) - A_{j_0} = (A_B A_B^{-1}) A_{j_0} - A_{j_0} = A_{j_0} - A_{j_0} = 0.$$

Finally, because

$$\mathbf{c}^T \mathbf{y} = \mathbf{c}_B^T \mathbf{y}_B + c_{j_0} y_{j_0} = \mathbf{c}_B^T (-\mathbf{A}_B^{-1} \mathbf{A}_{j_0}) + c_{j_0} = c_{j_0} - \mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{A}_{j_0} = \overline{c}_{j_0}$$

we have that $\mathbf{c}^T \mathbf{y} = \overline{c}_{j_0} < 0$ which finishes the proof.