
Simplex - first example
Suppose we are given the problem

Minimize z = −x1 + 2x2 − x3

subject to





x1 −2x2 +x3 +x4 = 10
2x1 −3x2 −x3 +x5 = 6
x1, x2, x3, x4, x5 ≥ 0.

I Rewrite the objective function as 0 = −z − x1 + 2x2 − x3.

I For the constraints, swap the LHS and RHS.

I We have the following:



0 = −z −x1 +2x2 −x3
10 = x1 −2x2 +x3 +x4

6 = 2x1 −3x2 −x3 +x5
x1, x2, x3, x4, x5 ≥ 0.





0 = −z −x1 +2x2 −x3
10 = x1 −2x2 +x3 +x4

6 = 2x1 −3x2 −x3 +x5
x1, x2, x3, x4, x5 ≥ 0.

Set x0 = −z . We have the following initial tableau:
x0 x1 x2 x3 x4 x5

x0 = −z 0 1 −1 2 −1 0 0
x4 10 0 1 −2 1 1 0
x5 6 0 2 −3 −1 0 1

The tableau is solved for the basis B = (4, 5) and the
corresponding basic feasible solution is x = (0, 0, 0, 10, 6)T .
(Note: in the future we will not include the x0 column in the
tableau. We refer to the entries in the first column as,


a0,0
...

am,0


, the x1 column as




a0,1
...

am,1


, etc.).

x0 x1 x2 x3 x4 x5
x0 = −z 0 1 −1 2 −1 0 0
x4 10 0 1 −2 1 1 0
x5 6 0 2 −3 −1 0 1

1. Check for negative entries in the top row other than a0,0.

2. Choose ANY such negative entry, for example a0,1 = −1. The
corresponding column is called the pivot column.

3. Both entries in this column are positive, so we must compare
ratios to determine the pivot column.

4. The ratio
a1,0
a1,1

= 10
1 is greater than the ratio

a2,0
a2,1

= 6
2 , so the

pivot row is row 2. The entry a2,1 = 2 is the called the pivot
entry.

5. Pivoting on the pivot entry will solve the tableau for the basis
(4, 1). We replace 5 with 1 in the basis, because the x1
column is the pivot column and the pivot row is solved for x5.



x0 x1 x2 x3 x4 x5
x0 = −z 3 1 0 1/2 −3/2 0 1/2
x4 7 0 0 −1/2 3/2 1 −1/2
x1 3 0 1 −3/2 −1/2 0 1/2

1. This tableau is solved for the basis B = (4, 1) and
corresponding bfs is x = (3, 0, 0, 7, 0)T .

2. The tableau implies that z = −3 + 1
2 · x2 − 3

2 · x3 + 1
2 · x5, so

z = −3 for the current bfs, and this solution is better than
the previous one.

3. The only negative entry in the 0th row is the coefficient at x3,
a0,3 = −3/2, so the pivot column is the x3 column.

4. In this column, there is only one positive entry, a1,3 = 3/2, so
we pivot on this entry to solve for the basis (3, 1).

x0 x1 x2 x3 x4 x5
x0 = −z 10 1 0 0 0 1 0
x3 14/3 0 0 −1/3 1 2/3 −1/3
x1 16/3 0 1 −5/3 0 1/3 1/3

1. This tableau corresponds to the basis (3, 1) and the
correspond bfs is x = (16/3, 0, 14/3, 0, 0)T .

2. We have that z = −10 + x4 which implies that z ≥ −10,
because in any feasible solution x4 ≥ 0. Because the value of
the object function at the current bfs is −10, the current bfs
is an optimum and the algorithm terminates.

3. In general, the simplex algorithm terminates when all of the
entries in the top row, except possibly a0,0, are non-negative.
(Note: If the LP is unbounded there is a different condition
which causes the algorithm to terminate).

1. Recall our initial tableau T - now written without the headings

T =




0 1 −1 2 −1 0 0

10 0 1 −2 1 1 0
6 0 2 −3 −1 0 1




2. In the first pivot step, we multiplied row 2 by 1/2 and then
added row 2 to row 0 and then subtracted row 2 from row 1.

3. These three steps can be thought for a left multiplication or
pre-multiplication by the following three invertible matrices.



1 0 0
0 1 −1
0 0 1






1 0 1
0 1 0
0 0 1






1 0 0
0 1 0
0 0 1

2


 =




1 0 1
2

0 1 −1
2

0 0 1
2




4. Similarly, the second pivot step is equivalent to
pre-multiplication by the following three invertible matrices.



1 0 0
0 1 0
0 1

2 1






1 3
2 0

0 1 0
0 0 1






1 0 0
0 2

3 0
0 0 1


 =




1 1 0
0 2

3 0
0 1

3 1






1. So the final tableau T′ is the initial tableau T pre-multiplied
by the following invertible matrix X

X :=




1 1 0
0 2

3 0
0 1

3 1






1 0 1
2

0 1 −1
2

0 0 1
2


 =




1 1 0
0 2

3 −1
3

0 1
3

1
3




2. That is,

XT =




1 1 0
0 2

3 −1
3

0 1
3

1
3






0 1 −1 2 −1 0 0

10 0 1 −2 1 1 0
6 0 2 −3 −1 0 1




=




10 1 0 0 0 1 0
14
3 0 0 −1

3 1 2
3 −1

3
16
3 0 1 −5

3 0 1
3

1
3


 = T′

3. Question: Why is




1
0
0


 = e1 the first column of X?

Because the x0 column of every tableau must be e1.

1. From now on, let’s remove the x0 column from T since it
never changes, so

T =




0 −1 2 −1 0 0

10 1 −2 1 1 0
6 2 −3 −1 0 1


 =

(
f cT

b A

)

2. Using block multiplication to compute T′ = XT we get

XT =




1 1 0

0 2
3 −1

3
0 1

3
1
3



(

f cT

b A

)

=




(1) (f ) +
(

1 0
)
b (1) cT +

(
1 0

)
A(

0
0

)
(f ) +

(
2
3 −1

3
1
3

1
3

)
b

(
0
0

)
cT +

(
2
3 −1

3
1
3

1
3

)
A




=




f +
(

1 0
)
b cT +

(
1 0

)
A(

2
3 −1

3
1
3

1
3

)
b

(
2
3 −1

3
1
3

1
3

)
A




1. In general, we can write X as




1 dT

0
...
0

U


 =

(
1 dT

0 U

)
.

2. So,

XT =

(
1 dT

0 U

)(
f cT

b A

)
=

(
f + dTb cT + dTA

Ub UA

)

=

(
f + dTb c1 + dTA1 c2 + dTA2 . . . cn + dTAn

Ub UA1 UA2 . . . UAn

)

3. Suppose T′ = XT is solved for the basis B = (j1, . . . , jm).

4. Question: What is UAB =
(
UAj1 UAj2 . . . UAjm

)
?

UAB = Im, because the last tableau is solved for B.

5. Question: What does that imply about U? U = A−1B

6. Question: What is
cTB + dTAB =

(
cj1 + dTAj1 . . . cjm + dTAjm

)
?

cTB + dTAB =
(

0 0 . . . 0
)

= 0T .

7. Question: What does that imply about dT ? dT = −cTBA
−1
B



You should know this!

1. To solve a tableau T =

(
f cT

b A

)
for the basis B,

pre-multiply by

X =

(
1 −cB

TA−1B

0 A−1B

)
=

(
1 cB

T

0 AB

)−1
.

2. The tableau solved for the basis B can be written as

XT =

(
f − cTBA

−1
B b cT − cTBA

−1
B A

A−1B b A−1B A

)
.

3. We often define πT := cTBA
−1
B , so X =

(
1 −πT
0 A−1B

)
and

XT =

(
f − πTb cT − πTA

A−1B b A−1B A

)
.

4. Furthermore, we let cT = cT − πTA. We call cT the relative
cost vector and c j the relative cost of xj or the relative cost
of Column j .


