Simplex - first example Suppose we are given the problem Minimize $z = -x_1 + 2x_2 - x_3$ subject to • Rewrite the objective function as $0 = -z - x_1 + 2x_2 - x_3$. ▶ For the constraints, swap the LHS and RHS. We have the following: $0 = -z - x_1 + 2x_2 - x_3$ 10 = $x_1 \quad -2x_2 \quad +x_3 \quad +x_4$ $2x_1 - 3x_2 - x_3$ 6 = $+x_5$ x_1 , x_2 , $x_3, \quad x_4, \quad x_5 \geq 0.$ $0 = -z - x_1 + 2x_2 - x_3$ 10 = $x_1 \quad -2x_2 \quad +x_3 \quad +x_4$ $2x_1 - 3x_2 - x_3$ 6 = $+x_5$ \geq 0. x_1 , x_2 , x_3 , *x*4, *X*5 Set $x_0 = -z$. We have the following initial tableau: *x*₁ *x*0 *x*₂ Х3 *X*4 *X*5 $^{-1}$ 0 2 0 0 $x_0 = -z$ 1 $^{-1}$ -2 1 0 1 1 0 *X*4 10 2 -3 0 $^{-1}$ X_5 6 0 1 The tableau is solved for the basis B = (4, 5) and the corresponding basic feasible solution is $\mathbf{x} = (0, 0, 0, 10, 6)^T$. (Note: in the future we will not include the x_0 column in the tableau. We refer to the entries in the first column as, a_{0.0} $a_{0,1}$ ÷ , the x_1 column as (, etc.). $a_{m,0}$ a_{m,1}

		<i>x</i> 0	\mathbf{x}_1	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
$x_0 = -z$	0	1	-1	2	$^{-1}$	0	0
<i>X</i> 4	10	0	1	-2	1	1	0
<i>X</i> 5	6	0	2	-3	-1	0	1

1. Check for negative entries in the top row other than $a_{0,0}$.

- 2. Choose ANY such negative entry, for example $a_{0,1} = -1$. The corresponding column is called the *pivot column*.
- 3. Both entries in this column are positive, so we must compare ratios to determine the pivot column.
- 4. The ratio $\frac{a_{1,0}}{a_{1,1}} = \frac{10}{1}$ is greater than the ratio $\frac{a_{2,0}}{a_{2,1}} = \frac{6}{2}$, so the *pivot row* is row 2. The entry $a_{2,1} = 2$ is the called the *pivot* entry.
- 5. Pivoting on the pivot entry will solve the tableau for the basis (4, 1). We replace 5 with 1 in the basis, because the x_1 column is the pivot column and the pivot row is solved for x_5 .

		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5
$x_0 = -z$	3	1	0	1/2	-3/2	0	1/2
<i>x</i> ₄	7	0	0	-1/2	3/2	1	-1/2
<i>x</i> ₁	3	0	1	-3/2	-1/2	0	1/2

- 1. This tableau is solved for the basis B = (4, 1) and corresponding bfs is $\mathbf{x} = (3, 0, 0, 7, 0)^T$.
- 2. The tableau implies that $z = -3 + \frac{1}{2} \cdot x_2 \frac{3}{2} \cdot x_3 + \frac{1}{2} \cdot x_5$, so z = -3 for the current bfs, and this solution is better than the previous one.
- 3. The only negative entry in the 0th row is the coefficient at x_3 , $a_{0,3} = -3/2$, so the pivot column is the x_3 column.
- 4. In this column, there is only one positive entry, $a_{1,3} = 3/2$, so we pivot on this entry to solve for the basis (3, 1).

		<i>x</i> 0	<i>x</i> ₁	x ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5
$x_0 = -z$	10	1	0	0	0	1	0
<i>x</i> 3	14/3	0	0	-1/3	1	2/3	-1/3
<i>x</i> ₁	16/3	0	1	-5/3	0	1/3	1/3

- 1. This tableau corresponds to the basis (3,1) and the correspond bfs is $\mathbf{x} = (16/3, 0, 14/3, 0, 0)^T$.
- 2. We have that $z = -10 + x_4$ which implies that $z \ge -10$, because in any feasible solution $x_4 \ge 0$. Because the value of the object function at the current bfs is -10, the current bfs is an optimum and the algorithm terminates.
- In general, the simplex algorithm terminates when all of the entries in the top row, except possibly a_{0,0}, are non-negative. (Note: If the LP is unbounded there is a different condition which causes the algorithm to terminate).
- 1. Recall our initial tableau \mathbf{T} now written without the headings

$$\mathbf{T} = \begin{pmatrix} 0 & 1 & -1 & 2 & -1 & 0 & 0 \\ \hline 10 & 0 & 1 & -2 & 1 & 1 & 0 \\ 6 & 0 & 2 & -3 & -1 & 0 & 1 \end{pmatrix}$$

- 2. In the first pivot step, we multiplied row 2 by 1/2 and then added row 2 to row 0 and then subtracted row 2 from row 1.
- 3. These three steps can be thought for a left multiplication or pre-multiplication by the following three invertible matrices.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

 Similarly, the second pivot step is equivalent to pre-multiplication by the following three invertible matrices.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{3}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & \frac{1}{3} & 1 \end{pmatrix}$$

1. So the final tableau T' is the initial tableau T pre-multiplied
by the following invertible matrix X
$$\mathbf{X} := \begin{pmatrix} 1 & 1 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 \\ 1 & 1 \text{ row on, let's remove the x_0 column from T since it never changes, so \\ T & T & = \left(\frac{1}{0} \left| \frac{1}{\frac{1}{3}} - \frac{1}{-\frac{1}{3}} \right) \left(\frac{f}{1} \left| \frac{c^T}{A} \right) \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \right) \\ 0 & 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1}{3} \right) \mathbf{A} \\ 0 & c^T + \left(\frac{1}{3} & -\frac{1$$

You should know this!

3.

1. To solve a tableau $\mathbf{T} = \left(\begin{array}{c|c} f & \mathbf{c}^T \\ \hline \mathbf{b} & \mathbf{A} \end{array} \right)$ for the basis *B*, pre-multiply by $\mathbf{X} = \left(\begin{array}{c|c} 1 & -\mathbf{c}_{\mathbf{B}}^T \mathbf{A}_B^{-1} \\ \hline \mathbf{A}_B^{-1} \end{array} \right) = \left(\begin{array}{c|c} 1 & \mathbf{c}_{\mathbf{B}}^T \\ \hline \mathbf{c}_{\mathbf{B}}^T \end{array} \right)^{-1}$

$$\mathbf{X} = \left(\frac{1}{\mathbf{0}} \mid \frac{-\mathbf{C}_{B} \cdot \mathbf{A}_{B}}{\mathbf{A}_{B}^{-1}}\right) = \left(\frac{1}{\mathbf{0}} \mid \frac{\mathbf{C}_{B}}{\mathbf{A}_{B}}\right)$$

2. The tableau solved for the basis \boldsymbol{B} can be written as

$$\mathbf{XT} = \left(\frac{f - \mathbf{c}_B^{\,\prime} \mathbf{A}_B^{-1} \mathbf{b}}{\mathbf{A}_B^{-1} \mathbf{b}} \begin{vmatrix} \mathbf{c}^{\,\prime} - \mathbf{c}_B^{\,\prime} \mathbf{A}_B^{-1} \mathbf{A} \end{vmatrix} \right).$$

We often define
$$\pi^T := \mathbf{c}_B^T \mathbf{A}_B^{-1}$$
, so $\mathbf{X} = \left(\frac{1 - \pi}{\mathbf{0} | \mathbf{A}_B^{-1}}\right)$ and
 $\mathbf{XT} = \left(\frac{f - \pi^T \mathbf{b} | \mathbf{c}^T - \pi^T \mathbf{A}}{\mathbf{A}_B^{-1} \mathbf{b} | \mathbf{A}_B^{-1} \mathbf{A}}\right).$

4. Furthermore, we let $\overline{\mathbf{c}}^T = \mathbf{c}^T - \pi^T \mathbf{A}$. We call $\overline{\mathbf{c}}^T$ the *relative cost vector* and \overline{c}_j the *relative cost* of x_j or the *relative cost* of Column *j*.