Suppose we are given the problem Minimize $z = -19x_1 - 13x_2 - 12x_3 - 17x_4$ subject to $3x_1$ $+2x_{2}$ $+2x_{4}$ 225. $+x_3$ = 117, $+x_{2}$ $+x_{3}$ $+x_4$ x_1 (1) $+3x_2 +3x_3 +4x_4 = 420$ $4x_{1}$ 0 x_1 , X₄ There is no obvious bfs, so we use the revised two phase simplex method \blacktriangleright To start the first phase, we add to each of the equations its own variable y_i and consider the auxiliary problem of minimizing $\xi = y_1 + y_2 + y_3$ (we think of $y_1 = x_5$, $y_2 = x_6$ and $y_3 = x_7$) • Throughout the first phase, \mathbf{c}^{T} and \mathbf{A} refer to the cost vector and matrix of the first phase linear program, not the original LP (1). • In the second phase, \mathbf{c}^{T} and \mathbf{A} refer to the cost vector and matrix of the original LP (1). This is the tableau corresponding to the phase one LP *x*₂ *X*3 $x_4 \quad x_5 = y_1$ $x_6 = y_2$ $x_7 = y_3$ X_1 0 0 0 0 0 $-\xi$ 1 1 1 2 225 3 2 1 1 0 0 y_1 117 1 1 1 1 0 1 0 *y*₂ 420 4 3 3 4 0 0 1 V3 Since $\mathbf{b} \ge \mathbf{0}$, we can use B = (5, 6, 7) as our basis. • We **do not** exclude y_1, y_2 and y_3 from the top row. • Our carry matrix always has the form $\begin{bmatrix} -\pi^T \mathbf{b} & -\pi^T \\ \mathbf{A}_B^{-1} \mathbf{b} & \mathbf{A}_B^{-1} \end{bmatrix}$. ▶ When B = (5, 6, 7), $\mathbf{A}_B = \mathbf{I}_m$, so $\mathbf{A}_B^{-1} = \mathbf{I}_m$, $\pi^T = \mathbf{c}_B^T \mathbf{A}_B^{-1} = \mathbf{c}_B^T = [1, 1, 1]$, $\mathbf{A}_B^{-1} \mathbf{b} = \mathbf{b} = [225, 117, 420]^T$, and $\pi^T \mathbf{b} = [1, 1, 1] [255, 117, 420]^T = 225 + 117 + 420 = 762$. The following is our initial carry matrix -762 $-\xi$ -1 _1 _1 225 0 0 1 y_1 CARRY-0 117 0 1 0 y_2 420 0 0 1 V3 -8 $-\xi$ -762 _1 _1 -1 0 225 1 0 (3) y_1 CARRY-0 117 0 1 0 1 *y*₂ 0 0 1 *y*3 420 4 ► $\overline{c}_1 = c_1 - \pi^T \mathbf{A}_1 = 0 + [-1, -1, -1][3, 1, 4]^T = -8 < 0$, so we pivot on column 1. ▶ $\mathbf{A}_B^{-1}\mathbf{A}_1 = \mathbf{A}_1 = [3, 1, 4]^T$, so we append column $[-8, 3, 1, 4]^T$ to CARRY-0 and pivot on row one because $\frac{225}{3} < \frac{117}{1}$ and $\frac{225}{3} < \frac{420}{4}$. This means that, in the CARRY-0 matrix only, we divide row one by 3, then we add 8 times row one to row zero, add -1 times row one to row two, and add -4 times row one to row three. This yields the next carry matrix, $\frac{y_1}{5/3}$ *y*₃ -162 $-\xi$ $^{-1}$ -1 CARRY-1 x₁ 75 1/3 0 0 -1/30 42 1 *y*₂ 120 -4/30 1 *y*3

$$CARRY-1 \begin{array}{c} -\xi \\ y_{1} \\ y_{2} \\ y_{3} \end{array} \underbrace{\left[\frac{-162}{75} \frac{5/3}{1/3} \frac{-1}{0} - 1 \\ \frac{1}{22} - 1/3 \frac{1}{10} 0 \\ \frac{1}{22} - 1/3 \frac{1}{10} 0 \\ \frac{1}{13} \\ \frac{1}{13} \\ \end{array} \right]}_{1/3} \begin{bmatrix} -2/3 \\ 2/3 \\ \frac{1}{13} \\ \frac{1}{$$

- Since x₂ is in the basis and x₁ was removed from the basis on the previous step, we can start with column 3. (On the **next** iteration, we will **have to check** the x₁ column again.)
- We compute $\overline{c}_3 = c_3 \pi^T \mathbf{A}_3 = 0 + [2, -1, -1][1, 1, 3]^T = -2 < 0$, so we pivot on column 3.
- Now we compute $\mathbf{A}_B^{-1}\mathbf{A}_3 = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 3/2 \end{pmatrix}$.
- Adding column [−2, 1/2, 1/2, 3/2]^T to CARRY-2 and pivoting on the second row we get CARRY-3:

• Note that x_1 entered the basis, then left it, and now entered it again.

- Since x_1 and x_3 are in the basis and x_2 was just removed from the basis on the last iteration, we can start with column 4:
 - $\overline{c}_4 = c_4 \pi^T \textbf{A}_4 = 0 + [1/2, 5/2, -1] [2, 1, 4]^T = -1/2 < 0.$ So we pivot on column 4,

►
$$\mathbf{A}_B^{-1}\mathbf{A}_4 = \begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 3/2 & 0 \\ -1/2 & -5/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}.$$

► Adding column [-1/2, 1/2, 1/2, 1/2]^T to the last tableau and pivoting on the last row we get CARRY-5:

CARRY-5	$-\xi$	0	0	0	0
	x_1	39	1	2	-1
	<i>x</i> 3	48	0	4	$^{-1}$
	<i>x</i> ₄	30	$^{-1}$	-5	2

- Since $\xi = 0$ and y_1, y_2 and y_3 are not in the basis, we have found a feasible ordered basis for the original problem B = (1, 3, 4).
- We replace the top row with $[-\pi^T \mathbf{b}| \pi^T]$, where $\pi^T = \mathbf{c}_B^T \mathbf{A}_B^{-1}$ is computed using c^T from the original LP (1).
- We compute (note the order c^T_B = [c₁, c₃, c₄] = [−19, −12, −17] must match the order in the basis heading x₁, x₃, x₄)

$$\pi^{T} = \mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1} = [-19, -12, -17] \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ -1 & -5 & 2 \end{pmatrix} = [-2, -1, -3].$$

• Then we compute $\pi^T \mathbf{b} = [-2, -1, -3][255, 117, 420]^T = -1827.$

► Hence, our CARRY-6 is

CARRY-6
$$\begin{array}{c|ccccc} -z & 1827 & 2 & 1 & 3 \\ x_1 & 39 & 1 & 2 & -1 \\ x_3 & 48 & 0 & 4 & -1 \\ x_4 & 30 & -1 & -5 & 2 \end{array}$$

