Suppose we are given the problem

$$
\text { Minimize } z=-19 x_{1}-13 x_{2}-12 x_{3}-17 x_{4}
$$

subject to

$$
\left\{\begin{array}{ccccc}
3 x_{1} & +2 x_{2} & +x_{3} & +2 x_{4} & = \tag{1}\\
x_{1} & +x_{2} & +x_{3} & +x_{4} & = \\
417, \\
4 x_{1} & +3 x_{2} & +3 x_{3} & +4 x_{4} & = \\
x_{1}, & x_{2}, & x_{3}, & x_{4} & \geq
\end{array}\right.
$$

- There is no obvious bfs, so we use the revised two phase simplex method
- To start the first phase, we add to each of the equations its own variable y_{i} and consider the auxiliary problem of minimizing $\xi=y_{1}+y_{2}+y_{3}$ (we think of $y_{1}=x_{5}, y_{2}=x_{6}$ and $y_{3}=x_{7}$)
- Throughout the first phase, \mathbf{c}^{T} and \mathbf{A} refer to the cost vector and matrix of the first phase linear program, not the original LP (1).
- In the second phase, \mathbf{c}^{T} and \mathbf{A} refer to the cost vector and matrix of the original LP (1).
- This is the tableau corresponding to the phase one LP

$-\xi$		x_{1}	x_{2}	x_{3}	x_{4}	$x_{5}=y_{1}$	$x_{6}=y_{2}$	$x_{7}=y_{3}$
	0	0	0	0	0	1	1	1
	225	3	2	1	2	1	0	0
	y_{2}	117	1	1	1	1	0	1
	420	4	3	3	4	0	0	1

- Since $\mathbf{b} \geq \mathbf{0}$, we can use $B=(5,6,7)$ as our basis.
- We do not exclude y_{1}, y_{2} and y_{3} from the top row.
- Our carry matrix always has the form $\left[\begin{array}{r|r}-\pi^{T} \mathbf{b} & -\pi^{T} \\ \hline \mathbf{A}_{B}^{-1} \mathbf{b} & \mathbf{A}_{B}^{-1}\end{array}\right]$.
- When $B=(5,6,7), \mathbf{A}_{B}=\mathbf{I}_{m}$, so $\mathbf{A}_{B}^{-1}=\mathbf{I}_{m}, \pi^{T}=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}=\mathbf{c}_{B}^{T}=[1,1,1]$, $\mathbf{A}_{B}^{-1} \mathbf{b}=\mathbf{b}=[225,117,420]^{\top}$, and $\pi^{B}{ }^{T} \mathbf{b}=[1,1,1][255,117,420]^{T}=225+117+420=762$.
- The following is our initial carry matrix

CARRY-0

$-\xi$	-762	-1	-1	-1
	-225	1	0	0
y_{1}	225			
y_{2}	117	0	1	0
y_{3}	420	0	0	1

CARRY-0

$-\xi$	-762	-1	-1	-1	-8
y_{1}	225	1	0	0	(3)
y_{2}	117	0	1	0	1
y_{3}	420	0	0	1	4

$\bar{c}_{1}=c_{1}-\pi^{T} \mathbf{A}_{1}=0+[-1,-1,-1][3,1,4]^{T}=-8<0$, so we pivot on column 1 .

- $\mathbf{A}_{B}^{-1} \mathbf{A}_{1}=\mathbf{A}_{1}=[3,1,4]^{T}$, so we append column $[-8,3,1,4]^{T}$ to CARRY-0 and pivot on row one because $\frac{225}{3}<\frac{117}{1}$ and $\frac{225}{3}<\frac{420}{4}$.
- This means that, in the CARRY-0 matrix only, we divide row one by 3 , then we add 8 times row one to row zero, add -1 times row one to row two, and add -4 times row one to row three.
- This yields the next carry matrix,

CARRY-1

		y_{1}	y_{2}	y_{3}
$-\xi$	-162	$5 / 3$	-1	-1
x_{1}	75	$1 / 3$	0	0
y_{2}	42	$-1 / 3$	1	0
	y_{3}	120	$-4 / 3$	0

CARRY-1

$-\xi$	-162	5/3	-1	-1	-2/3
x_{1}	75	1/3	0	0	2/3
y_{2}	42	-1/3	1	0	
y_{3}	120	-4/3	0	1	1/3
					1/3

- Now we calculate $\bar{c}_{2}=c_{2}-\pi^{T} \mathbf{A}_{2}=0+[5 / 3,-1,-1][2,1,3]^{T}=-2 / 3($ we do not calculate \bar{c}_{1}, because x_{1} is basic which implies that $\bar{c}_{1}=0$.)
- Since $\bar{c}_{2}=-2 / 3<0$, we pivot on column 2.
- We compute $\mathbf{A}_{B}^{-1} \mathbf{A}_{2}=\left(\begin{array}{rrr}1 / 3 & 0 & 0 \\ -1 / 3 & 1 & 0 \\ -4 / 3 & 0 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{l}2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right)$.
- Adding column $[-2 / 3,2 / 3,1 / 3,1 / 3]^{T}$ to CARRY-1 and pivoting on the first row we get CARRY-2:

CARRY-2

$-\xi$	-87	2	-1	-1
x_{2}	225/2	1/2	0	0
y_{2}	9/2	$-1 / 2$	1	0
y_{3}	165/2	-3/2	0	1

CARRY-2

$-\xi$	-87	2	-1	-1	-2
χ_{2}	225/2	1/2	0	0	1/2
y_{2}	9/2	-1/2	1	0	1/2
y_{3}	165/2	-3/2	0	1	1/2

Since x_{2} is in the basis and x_{1} was removed from the basis on the previous step, we can start with column 3. (On the next iteration, we will have to check the x_{1} column again.)

- We compute $\bar{c}_{3}=c_{3}-\pi^{T} \mathbf{A}_{3}=0+[2,-1,-1][1,1,3]^{T}=-2<0$, so we pivot on column 3.
Now we compute $\mathbf{A}_{B}^{-1} \mathbf{A}_{3}=\left(\begin{array}{rrr}1 / 2 & 0 & 0 \\ -1 / 2 & 1 & 0 \\ -3 / 2 & 0 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{l}1 / 2 \\ 1 / 2 \\ 3 / 2\end{array}\right)$.
Adding column $[-2,1 / 2,1 / 2,3 / 2]^{T}$ to CARRY-2 and pivoting on the second row we get CARRY-3:

CARRY-3

$-\xi$	-69	0	3	-1
x_{2}	108	1	-1	0
x_{3}	9	-1	2	0
y_{3}	69	0	-3	1

CARRY-3

$-\xi$	-69	0	3	-1	-1
x_{2}	108	1	-1	0	(2)
x_{3}	9	-1	2	0	-1
y_{3}	69	0	-3	1	1

We know must check column 1 again, so we compute
$\bar{c}_{1}=c_{1}-\pi^{T} \mathbf{A}_{1}=0+[0,3,-1][3,1,4]^{T}=-1<0$, so we pivot on column 1.
$\mathbf{A}_{B}^{-1} \mathbf{A}_{1}=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -3 & 1\end{array}\right)\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$.

- We add column $[-1,2,-1,1]^{T}$ to CARRY-3 and pivot on the first row to get CARRY-4:

CARRY-4

$-\xi$	-15	$1 / 2$	$5 / 2$	-1
x_{1}	54	$1 / 2$	$-1 / 2$	0
	x_{3}			
y_{3}	63	$-1 / 2$	$3 / 2$	0
	15	$-1 / 2$	$-5 / 2$	1

CARRY-4

$-\xi$	-15	1/2	5/2	-1	-1/2
χ_{1}	54	1/2	1/2	0	1/2
x_{3}	63	-1/2	3/2	0	1/2
y_{3}	15	-1/2	-5/2	1	1/2

Note that x_{1} entered the basis, then left it, and now entered it again.
Since x_{1} and x_{3} are in the basis and x_{2} was just removed from the basis on the last iteration, we can start with column 4:
$\bar{c}_{4}=c_{4}-\pi^{T} \mathbf{A}_{4}=0+[1 / 2,5 / 2,-1][2,1,4]^{T}=-1 / 2<0$. So we pivot on column 4,
$\mathbf{A}_{B}^{-1} \mathbf{A}_{4}=\left(\begin{array}{rrr}1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 3 / 2 & 0 \\ -1 / 2 & -5 / 2 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$.
Adding column $[-1 / 2,1 / 2,1 / 2,1 / 2]^{T}$ to the last tableau and pivoting on the last row we get CARRY-5:

CARRY-5

	$-\xi$	0	0	0
x_{1}	0			
	39	1	2	-1
x_{3}	48	0	4	-1
x_{4}	30	-1	-5	2

CARRY-5

	0	0	0	0
x_{1}	39	1	2	-1
x_{3}	48	0	4	-1
x_{4}	30	-1	-5	2

Since $\xi=0$ and y_{1}, y_{2} and y_{3} are not in the basis, we have found a feasible ordered basis for the original problem $B=(1,3,4)$.

- We replace the top row with $\left[-\pi^{T} \mathbf{b} \mid-\pi^{T}\right]$, where $\pi^{T}=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}$ is computed using c^{\top} from the original LP (1).
- We compute (note the order $\mathbf{c}_{B}^{T}=\left[c_{1}, c_{3}, c_{4}\right]=[-19,-12,-17]$ must match the order in the basis heading x_{1}, x_{3}, x_{4})

$$
\pi^{T}=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}=[-19,-12,-17]\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 4 & -1 \\
-1 & -5 & 2
\end{array}\right)=[-2,-1,-3]
$$

Then we compute $\pi^{T} \mathbf{b}=[-2,-1,-3][255,117,420]^{T}=-1827$.
Hence, our CARRY-6 is

CARRY-6

	1827	2	1	3
x_{1}	39	1	2	-1
x_{3}	48	0	4	-1
x_{4}	30	-1	-5	2

CARRY-6

	$-z$	1827	2	1
x_{1}	3			
x_{1}	39	1	2	-1
x_{3}	48	0	4	-1
x_{4}	30	-1	-5	2

The only variable not in the basis is x_{2}, so we compute $\bar{c}_{2}=c_{2}-\pi^{T} A_{2}=-13+[2,1,3][2,1,3]^{T}=1 \geq 0$

- Since it is nonnegative, we conclude that the optimal value is -1827 attained at $x=[39,0,48,30]^{T}$.

