Primal-dual example

Suppose we are given the problem P:

Minimize
$$z = x_1 + 3x_2 + 3x_3 + x_4$$

subject to

$$\begin{cases}
3x_1 + 4x_2 - 3x_3 + x_4 = 2, \\
3x_1 - 2x_2 + 6x_3 - x_4 = 1, \\
6x_1 + 4x_2 + x_4 = 4, \\
x_1, x_2, x_3, x_4 \ge 0.
\end{cases} (1)$$

The dual **D** of **P** is the following:

Maximize
$$w=2\pi_1+\pi_2+4\pi_3$$

subject to

$$\begin{cases}
3\pi_1 & +3\pi_2 & +6\pi_3 \leq 1, \\
4\pi_1 & -2\pi_2 & +4\pi_3 \leq 3, \\
-3\pi_1 & +6\pi_2 & \leq 3, \\
\pi_1 & -\pi_2 & +\pi_3 \leq 1.
\end{cases}$$
(2)

- Someone tells us that the vector $\pi = (\frac{1}{3}, 0, 0)^T$ is an optimal vector for **D**.
- We compute that π is feasible and J, the indices of the *admissible* columns, is $\{1\}$.
- ▶ Complementary slackness implies that if π is optimal for \mathbf{D} , then there exists a solution to \mathbf{P} such that the only non-zero entry is x_1 .
- We try to find it by solving the following restricted primal problem RP1 using revised simplex.

$$Minimize \xi = x_1^r + x_2^r + x_3^r$$

subject to

$$\begin{cases} 3x_1 & +x_1^r & = & 2, \\ 3x_1 & & +x_2^r & = & 1, \\ 6x_1 & & & +x_3^r & = & 4, \\ x_1, & x_1^r, & x_2^r, & x_3^r & \geq & 0. \end{cases}$$

- ▶ The cost vector we will use is for the restricted primal problem, i.e. x_1^r , x_2^r , and x_3^r each has cost 1 and x_1 , x_2 , x_3 and x_4 each has cost 0.
- ▶ We use the label π^r instead of π when solving **RP**.
- We start with x_1^r, x_2^r , and x_3^r in the basis, so $(\pi^r)^T = \mathbf{c}_B^T \mathbf{A}_B^{-1} = [1, 1, 1]$ and $(\pi^r)^T \mathbf{b} = 7$, and the initial CARRY matrix is:

$-\xi$	-7	-1	-1	-1
x_1^r	2	1	0	0
x_2^r	1	0	1	0
x_2^r x_3^r	4	0	0	1

- ▶ There is only one column we can bring into the basis, the column associated with x_1 . The relative cost of this column is $0 (\pi^r)^T \mathbf{A}_1 = -12$.
- ▶ We compute that $\mathbf{A}_B^{-1}\mathbf{A}_1 = [3,3,6]^T$, and append $[-12,3,3,6]^T$ to the tableau and pivot on the second row.

We get the following CARRY, and we are done since x₂ just left the basis, so it has non-negative relative cost, and we cannot pivot on the x₂, x₃ or x₄ columns since they are not admissible.

$-\xi$	-3	-1	3	-1
x_1^r	1	1	-1	0
x_1	1/3	0	1/3	0
x_3^r	2	0	-2	1

- ▶ Since the optimal value of \overline{RP} is $\xi = 3$, we know that $\pi = (1/3, 0, 0)^T$ is NOT optimal for \mathbf{D} .
- ▶ But we can use π^r to improve π . Our new π^* will have the form

$$\pi^* = \pi + \theta \pi^r. \tag{3}$$

▶ Here θ is a positive number that we will compute and π^r is an optimal vector in the dual **DRP1** to **RP1** which is:

$$\begin{array}{c} \text{Maximize } w^r = 2\pi_1^r + \pi_2^r + 4\pi_3^r \\ \text{subject to} & \begin{cases} 3\pi_1^r & +3\pi_2^r & +6\pi_3^r & \leq & 0, \\ \pi_1^r & & \leq & 1, \\ & \pi_2^r & & \leq & 1, \\ & & \pi_3^r & \leq & 1. \end{cases}$$

- We extract $(\pi^r)^T = [1, -3, 1]$ from the last CARRY matrix.
- Now we choose θ as large as possible so that the vector $(\pi^*)^T = (\frac{1}{3}, 0, 0) + \theta(1, -3, 1)$ is feasible for **D**,
- ▶ That is, we need $\pi^T \mathbf{A}_j + \theta(\pi^r)^T \mathbf{A}_j \leq c_j$ for every $j \in [n]$.
- ▶ Since π^r is feasible for **DRP**, $(\pi^r)^T \mathbf{A}_j \leq 0$, for every $j \in J$.
- ► Therefore, $\theta = \min_{\substack{j \notin J, \\ (\pi')^T \mathbf{A}_j > 0}} \left\{ \frac{c_j \pi^T \mathbf{A}_j}{(\pi^r)^T \mathbf{A}_j} \right\}$
- lacksquare We compute $(\pi^r)^T \mathbf{A}_2 = 14$, $(\pi^r)^T \mathbf{A}_3 = -21$, and $(\pi^r)^T \mathbf{A}_4 = 5$, so
- $\bullet = \min\{\frac{c_2 \pi^T \mathbf{A}_2}{14}, \frac{c_4 \pi^T \mathbf{A}_4}{5}\} = \min\{\frac{5/3}{14}, \frac{2/3}{5}\} = \frac{5}{42}, \text{ and}$
- $(\pi^*)^T = \pi^T + \theta(\pi^r)^T = (\frac{1}{3}, 0, 0)^T + \frac{5}{42}(1, -3, 1)^T = (\frac{19}{42}, \frac{-5}{14}, \frac{5}{42})^T$
- Note that $(\pi^*)^T \mathbf{b} > \pi^T \mathbf{b}$ and set $\pi = \pi^*$.
- We compute that $J = \{1, 2\}$
- ▶ Note that, by 5.3, 1 must be in *J*, because it was in the basis at the end of the last iteration
- Our last carry matrix was

$-\xi$	-3	-1	3	-1
x_1^r	1	1	-1	0
x_1	1/3	0	1/3	0
X_3^r	2	0	-2	1

- ▶ The relative cost of x_2 is $0 (\pi^r)^T \mathbf{A}_2 = -14$, so we pivot on the x_2 column.
- ▶ We compute that $\mathbf{A}_B^{-1}\mathbf{A}_2 = [6, -2/3, 8]^T$, append $[-14, 6, -2/3, 8]^T$ to the CARRY matrix and pivot on the first row to obtain.

$-\xi$	-2/3	4/3	2/3	-1
<i>x</i> ₂	1/6	1/6	-1/6	0
x_1	4/9	1/9	2/9	0
x_3^r	2/3	-4/3	-2/3	1

► The relative cost of x_2^r is $1 - (\pi^r)^T \mathbf{e_2} = 1 + \frac{2}{3} = \frac{5}{3} \ge 0$, so we are done, because x_1^r just left the basis and the x_3 and x_4 columns are not admissible.

- ▶ We extract $(\pi^r)^T = [-\frac{4}{3}, \frac{-2}{3}, 1]$ from the CARRY matrix ▶ For $j \notin J$, we compute $(\pi^r)^T \mathbf{A}_j$, and $(\pi^r)^T \mathbf{A}_3 = 0$, and $(\pi^r)^T \mathbf{A}_4 = 1/3$. ▶ Hence $\theta = \min\{\frac{c_4 \pi^T \mathbf{A}_4}{1/3}\} = \min\{\frac{1 13/14}{1/3}\} = \frac{3}{14}$ ▶ So $(\pi^*)^T = \pi^T + \frac{3}{14}(\pi^r)^T = [\frac{1}{6}, \frac{-1}{2}, \frac{1}{3}]$. ▶ We set $\pi^T = (\pi^*)^T$ and compute $J = \{1, 2, 4\}$. 5.3 implies that $\{1, 2\} \subseteq J$, because x_1 and x_2 were in the basis at the end of the last iteration
- Recall that our last CARRY matrix was

	The street street					
$-\xi$	-2/3	4/3	2/3	-1		
x_2	1/6	1/6	-1/6	0		
x_1	4/9	1/9	2/9	0		
x_3^r	2/3	-4/3	-2/3	1		

- The relative cost of x_4 is $0-(\pi^r)^T=\frac{-1}{3}<0$, so we pivot on column 4 $\mathbf{A}_B^{-1}\mathbf{A}_4=[\frac{1}{3},\frac{-1}{9},\frac{1}{3}]^T$, so we append $[\frac{-1}{3},\frac{1}{3},\frac{-1}{9},\frac{1}{3}]^T$ to the CARRY matrix and pivot on row 1, to obtain

$-\xi$	-1/2	3/2	1/2	-1
<i>X</i> ₄	1/2	1/2	-1/2	0
x_1	1/2	1/6	1/6	0
x_3^r	1/2	-3/2	-1/2	1

- x_2 just left the basis and the relative cost of x_1^r is 1+3/2=5/2 and the relative cost of x_2^r is 1 + 1/2 = 3/2, so we are done.
- π^T is not optimal because $\xi_{opt} = 1/2 > 0$.
- ▶ We extract $(\pi^r)^T = [-3/2, -1/2, 1]$ from the CARRY matrix.
- ▶ For $j \notin J$, we compute $(\pi^r)^T \mathbf{A}_j$, and we have that $(\pi^r)^T \mathbf{A}_3 = 3/2$.
- ▶ Hence $\theta = \min\left\{\frac{c_3 \pi^T \mathbf{A}_3}{3/2}\right\} = \min\left\{\frac{3 (-7/2)}{3/2}\right\} = \frac{13}{3}$
- ▶ We compute $(\pi^*)^T = \pi^T + \frac{13}{3}(\pi^r)^T = [-\frac{19}{3}, \frac{-8}{3}, \frac{14}{3}]$ and set $\pi^T = (\pi^*)^T$, and $J = \{1, 3, 4\}$
- ▶ Recall that our last CARRY matrix was

$-\xi$	-1/2	3/2	1/2	-1
X_4	1/2	1/2	-1/2	0
x_1	1/2	1/6	1/6	0
x_3^r	1/2	-3/2	-1/2	1

- ▶ The relative cost x_3 is $0 (\pi^r)^T \mathbf{A}_3 = -3/2$, so we pivot on column 3
- ▶ We compute $\mathbf{A}_B^{-1}\mathbf{A}_3 = [-9/2,1/2,3/2]^T$, so we append $[-3/2,-9/2,1/2,3/2]^T$ to the CARRY matrix and pivot on row 3, to obtain

$-\xi$	0	0	0	0
X_4	2	-4	-2	3
x_1	1/3	2/3	1/3	-1/3
<i>X</i> ₃	1/3	-1	-1/3	2/3

► Since $\xi_{opt} = 0$, $(-\frac{19}{3}, -\frac{8}{3}, \frac{14}{3})^T$ is an optimal solution for **D** and the optimal solution **P** is $(\frac{1}{3}, 0, \frac{1}{3}, 2)^T$. The cost is $\frac{10}{3}$.

The following table summaries the entire process.

Iteration	π^T	$\pi^T \mathbf{b}$	J	$(\pi^r)^T$	$(\pi^r)^T \mathbf{b}$	θ
1	$[\frac{1}{3},0,0]$	<u>2</u> 3	{1}	[1, -3, 1]	3	<u>5</u> 42
2	$\left[\frac{19}{42}, \frac{-5}{14}, \frac{5}{42}\right]$	43 42	{1,2}	$\left[-\frac{4}{3}, -\frac{2}{3}, 1\right]$	<u>2</u> 3	3 14
3	$\left[\frac{1}{6}, -\frac{1}{2}, \frac{1}{3}\right]$	7 / 6	{1,2,4}	$\left[-\frac{3}{2}, -\frac{1}{2}, 1\right]$	$\frac{1}{2}$	13 3
4	$\left[-\frac{19}{3}, -\frac{8}{3}, \frac{14}{3}\right]$	10 3	{1,3,4}	[0,0,0]	0	N/A