Suppose we are given the problem

$$
\text { Minimize } z=2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}
$$

subject to

$$
\left\{\begin{array}{ccccc}
x_{1} & -x_{2} & +x_{3} & -x_{4} & \geq \tag{1}\\
x_{1} & -2 x_{2} & +3 x_{3} & -4 x_{4} & \geq \\
x_{1} \\
3 x_{1} & -4 x_{2} & +5 x_{3} & -6 x_{4} & \geq \\
x_{1}, & x_{2}, & x_{3}, & x_{4} & \geq \\
\hline
\end{array}\right.
$$

Do we add slack variables or surplus variables?

- Do we automatically have a basic feasible solution after adding surplus variables?
- We could do two phase simplex,
- but since the coefficients in the objective function are positive, we can use dual simplex.

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	$-z$	0	2	3	4	5	0	0
x_{5}	-10	-1	1	-1	1	1	0	0
	x_{6}	-6	-1	2	-3	4	0	1
x_{7}	-15	-3	4	-5	6	0	0	1

- After adding surplus variables and solving for the basis $B=(5,6,7)$ we have the tableau above.
- B is not a (primal) feasible basis, because $\mathbf{A}_{B}^{-1} \mathbf{b}=[-10,-6,-15]^{T}$ has negative entries. It is a dual feasible basis, because $\overline{\mathbf{c}}^{T} \geq \mathbf{0}^{T}$, so we can use the dual simplex algorithm.
- In dual simplex, we first pick the pivot row by selecting a row with a negative entry in column 0 . We arbitrarily select row $r=1$.
- We now pick the pivot column so that $z=-a_{0,0}$ does not decrease and the basis remains dual feasible.
- Since we do not want $z=-a_{0,0}$ to decrease, we pick the pivot column s so that $a_{r, s}<0$.
Since we want $\overline{\mathbf{c}}^{T}$ to remain non-negative we pick the x_{1} column, because $\frac{a_{0,1}}{a_{r, 1}}=\frac{2}{-1}>\frac{4}{-1}=\frac{a_{0,3}}{a_{r, 3}}$.
- Rule: Pick column s so that $\frac{a_{0, s}}{a_{r, s}}$ is maximized subject to $a_{r, s}<0$.

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	$-z$	-20	0	5	2	7	2	0
	10	1	-1	1	-1	-1	0	0
	x_{6}	4	0	1	-2	3	-1	1
	15	0	1	-2	3	-3	0	1

Now every $a_{i, 0}$ for $i \in[m]$ is nonnegative. So, the tableau is optimal.

- But suppose that the boss adds a new restriction:

$$
x_{1}+2 x_{2}+3 x_{3}-4 x_{4} \leq 8
$$

- With the dual simplex, we do not need to start from scratch. We simply add the new row and one more column to our final tableau.

			x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
		x_{8}							
	-20	0	5	2	7	2	0	0	0
	x_{1}	10	1	-1	1	-1	-1	0	0
x_{6}	4	0	1	-2	3	-1	1	0	0
	x_{7}	15	0	1	-2	3	-3	0	1
x_{8}	8	1	2	3	-4	0	0	0	1

- This tableau has a new row for the new equation and also a new slack variable
- We have to make sure that this tableau is solved for the basis, so we must exclude the basic variables from the new row.

		x_{1}	x_{2}	x_{3}	x_{4}	χ_{5}	x_{6}	x_{7}	x_{8}
$-z$	-20	0	5	2	7	2	0	0	0
x_{1}	10	1	-1	1	-1	-1	0	0	0
x_{6}	4	0	1	-2	3	-1	1	0	0
x_{7}	15	0	1	-2	3	-3	0	1	0
x_{8}	-2	0	3	2	-3	1	0	0	1

- We select row 4 as the pivot row because $a_{4,0}=-2<0$. We then pivot on column x_{4} because $a_{4,4}=-3$ is the only negative entry in row 4 .

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	$-z$	$-74 / 3$	0	12	$20 / 3$	0	$13 / 3$	0	0
x_{1}	$32 / 3$	1	-2	$1 / 3$	0	$-4 / 3$	0	0	$-1 / 3$
	x_{6}	2	0	4	0	0	0	1	0
x_{7}	13	0	4	0	0	-2	0	1	1
	x_{4}	$2 / 3$	0	-1	$-2 / 3$	1	$-1 / 3$	0	0
		$-1 / 3$							

- This is the final tableau because the basis is now both primal and dual feasible.
- Here are the constraints of the current problem (without the non-negativity constraints).

$$
\left\{\begin{array}{rllll}
x_{1} & -x_{2} & +x_{3} & -x_{4} & \geq \\
x_{1} & -2 x_{2} & +3 x_{3} & -4 x_{4} & \geq \\
3 x_{1} & -4 x_{2} & +5 x_{3} & -6 x_{4} & \geq \\
-x_{1} & -2 x_{2} & -3 x_{3} & +4 x_{4} & \geq \\
\hline 8
\end{array}\right.
$$

- Using the final basis $B=(1,6,7,4)$ we can compute an optimum for the dual $\left(\pi^{*}\right)^{T}=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}=\left(\begin{array}{cccc}\frac{13}{3} & 0 & 0 & \frac{7}{3}\end{array}\right)$
- If we change \mathbf{b} to \mathbf{b}^{\prime}, then B remains a dual feasible basis. Why? (The constraints of the dual are not changed)
- Assume that changing b_{1} from 10 to 12 or changing b_{4} from -8 to -6 will not affect primal feasiblilty, i.e. $\mathbf{A}_{B}^{-1} \mathbf{b}^{\prime} \geq \mathbf{0}$ for either change.
- Which change should we make?
- If $\mathbf{x}^{* *}$ is the basic solution corresponding to B for the modified LP, then $\mathbf{x}^{* *}$ and π^{*} are feasible for the modified LP and its dual, resp., and $\mathbf{c}^{T} \mathbf{x}^{* *}=$ $\mathbf{c}_{B}^{T} \mathbf{x}_{B}^{* *}=\mathbf{c}_{B}^{T}\left(\mathbf{A}_{B}^{-1} \mathbf{b}^{\prime}\right)=\left(\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}\right) \mathbf{b}^{\prime}=\left(\pi^{*}\right)^{T} \mathbf{b}^{\prime}=\pi_{1}^{*} b_{1}^{\prime}+\pi_{2}^{*} b_{2}^{\prime}+\pi_{3}^{*} b_{3}^{\prime}+\pi_{4}^{*} b_{4}^{\prime}$
- b_{1} from 10 to $12 \Longrightarrow$ cost increases by $2 \pi_{1}^{*}=\frac{26}{3}$
- b_{4} from -8 to $-6 \Longrightarrow$ cost increase by $2 \pi_{4}^{*}=\frac{14}{3}$. \checkmark
- We can think of π_{i}^{*} as the shadow price or marginal price of the resource associated with constraint i.
- What if we change \mathbf{b} to $\mathbf{b}^{\prime}=\left(\begin{array}{llll}10 & 6 & 15 & -5\end{array}\right)^{T}$?
- We have that $\mathbf{A}_{B}^{-1} \mathbf{b}=\left(\begin{array}{cccc}\frac{35}{3} & -1 & 10 & \frac{5}{3}\end{array}\right)^{T}$, so $B=(1,6,7,4)$ is no longer primal feasible. It is still dual feasible.
- We can use dual simplex by replacing entries $a_{0,0}$ to $a_{m, 0}$ in the final tableau. Replace $a_{0,0}$ with $-\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1} \mathbf{b}^{\prime}=-\left(\pi^{*}\right)^{T} \mathbf{b}^{\prime}=-\frac{74}{3}-3 \pi_{4}^{*}=-\frac{95}{3}$ and replace $\left(\begin{array}{lll}a_{0,1} & \ldots & a_{0, m}\end{array}\right)^{T}$ with $\mathbf{A}_{B}^{-1} \mathbf{b}^{\prime}$.
- So we start dual simplex with the following tableau

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	$-z$	$-95 / 3$	0	12	$20 / 3$	0	$13 / 3$	0	0
x_{1}	$35 / 3$	1	-2	$1 / 3$	0	$-4 / 3$	0	0	$-1 / 3$
x_{6}	-1	0	4	0	0	0	1	0	1
x_{7}	10	0	4	0	0	-2	0	1	1
x_{4}	$5 / 3$	0	-1	$-2 / 3$	1	$-1 / 3$	0	0	$-1 / 3$

- This LP is infeasible, because row 2 corresponds to the equation $-1=4 x_{2}+x_{6}+x_{8}$ which has not solution with $x_{2}, x_{6}, x_{8} \geq 0$.
- What does this imply about the dual? It is unbounded because π^{*} is a feasible solution for the dual and the primal is infeasible.

