Suppose we are given the problem Minimize $z = 2x_1 + 3x_2 + 4x_3 + 5x_4$ subject to (1)Do we add slack variables or surplus variables? > Do we automatically have a basic feasible solution after adding surplus variables? We could do two phase simplex, but since the coefficients in the objective function are positive, we can use dual simplex. X_1 x_2 X3 *x*4 X5 X₆ X7 0 -z0 2 3 4 5 0 0

 x_7 ↓ -15 -3 4 -5 6 0 0 1 After adding surplus variables and solving for the basis B = (5, 6, 7) we have the tableau above.

-1

-3

1

4

1

0

0

1

0

0

1

2

 $^{-1}$

-1

-10

 $^{-6}$

 X_5

x₆

- B is not a (primal) feasible basis, because A⁻¹_B b = [-10, -6, -15]^T has negative entries. It is a dual feasible basis, because c^T ≥ 0^T, so we can use the dual simplex algorithm.
- ▶ In dual simplex, we **first** pick the pivot **row** by selecting a row with a negative entry in column 0. We arbitrarily select row *r* = 1.
- We now pick the pivot column so that $z = -a_{0,0}$ does not decrease and the basis remains dual feasible.
- Since we do **not** want $z = -a_{0,0}$ to decrease, we pick the pivot column *s* so that $a_{r,s} < 0$.
- ▶ Since we want $\overline{\mathbf{c}}^T$ to remain non-negative we pick the x_1 column, because $\frac{a_{0,1}}{a_{r,1}} = \frac{2}{-1} > \frac{4}{-1} = \frac{a_{0,3}}{a_{r,3}}$.
- **Rule**: Pick column s so that $\frac{a_{0,s}}{a_{r,s}}$ is maximized subject to $a_{r,s} < 0$.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	<i>X</i> 5	<i>x</i> 6	X7
-z	-20	0	5	2	7	2	0	0
x_1	10	1	-1	1	-1	$^{-1}$	0	0
<i>x</i> 6	4	0	1	-2	3	$^{-1}$	1	0
<i>x</i> ₇	15	0	1	-2	3	-3	0	1

- ▶ Now every $a_{i,0}$ for $i \in [m]$ is nonnegative. So, the tableau is optimal.
- But suppose that the boss adds a new restriction:

$$x_1 + 2x_2 + 3x_3 - 4x_4 \le 8$$

▶ With the dual simplex, we do not need to start from scratch. We simply add the new row and one more column to our final tableau.

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	X_5	<i>x</i> 6	X7	<i>x</i> 8
-z	-20	0	5	2	7	2	0	0	0
<i>x</i> ₁	10	1	$^{-1}$	1	$^{-1}$	$^{-1}$	0	0	0
<i>x</i> ₆	4	0	1	-2	3	$^{-1}$	1	0	0
X7	15	0	1	-2	3	-3	0	1	0
<i>x</i> 8	8	1	2	3	-4	0	0	0	1

- This tableau has a new row for the new equation and also a new slack variable
- We have to make sure that this tableau is solved for the basis, so we must exclude the basic variables from the new row.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>X</i> 5	<i>x</i> 6	X7	<i>x</i> 8
-z	-20	0	5	2	7	2	0	0	0
x_1	10	1	-1	1	-1	-1	0	0	0
<i>x</i> ₆	4	0	1	-2	3	$^{-1}$	1	0	0
X7	15	0	1	-2	3	-3	0	1	0
<i>x</i> 8	-2	0	3	2	-3	1	0	0	1

• We select row 4 as the pivot row because $a_{4,0} = -2 < 0$. We then pivot on column x_4 because $a_{4,4} = -3$ is the only negative entry in row 4.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8
- <i>z</i>	-74/3	0	12	20/3	0	13/3	0	0	7/3
x_1	32/3	1	-2	1/3	0	-4/3	0	0	-1/3
x ₆	2	0	4	0	0	0	1	0	1
<i>X</i> 7	13	0	4	0	0	-2	0	1	1
<i>x</i> 4	2/3	0	$^{-1}$	-2/3	1	-1/3	0	0	-1/3

 This is the final tableau because the basis is now both primal and dual feasible.

 Here are the constraints of the current problem (without the non-negativity constraints).

x_1	$-x_{2}$	$+x_3$	$-x_4$	\geq	10,
x_1	$-2x_{2}$	$+3x_{3}$	$-4x_{4}$	\geq	6,
$3x_1$	$-4x_{2}$	$+5x_{3}$	$-6x_{4}$	\geq	15
$-x_1$	$-2x_{2}$	$-3x_{3}$	$+4x_{4}$	\geq	-8

- Using the final basis B = (1, 6, 7, 4) we can compute an optimum for the dual $(\pi^*)^T = \mathbf{c}_B^T \mathbf{A}_B^{-1} = \begin{pmatrix} \frac{13}{3} & 0 & 0 & \frac{7}{3} \end{pmatrix}$
- ► If we change b to b', then B remains a dual feasible basis. Why? (The constraints of the dual are not changed)
- ▶ Assume that changing b_1 from 10 to 12 or changing b_4 from -8 to -6 will not affect primal feasibility, i.e. $\mathbf{A}_B^{-1}\mathbf{b}' \ge \mathbf{0}$ for either change.
- Which change should we make?
- ► If \mathbf{x}^{**} is the basic solution corresponding to *B* for the modified LP, then \mathbf{x}^{**} and π^* are feasible for the modified LP and its dual, resp., and $\mathbf{c}^T \mathbf{x}^{**} = \mathbf{c}_B^T \mathbf{x}_B^{**} = \mathbf{c}_B^T (\mathbf{A}_B^{-1} \mathbf{b}') = (\mathbf{c}_B^T \mathbf{A}_B^{-1}) \mathbf{b}' = (\pi^*)^T \mathbf{b}' = \pi_1^* b_1' + \pi_2^* b_2' + \pi_3^* b_3' + \pi_4^* b_4'$
- b_1 from 10 to 12 \implies cost increases by $2\pi_1^* = rac{26}{3}$
- ▶ b_4 from -8 to -6 \implies cost increase by $2\pi_4^* = \frac{14}{3}$. \checkmark
- We can think of π^{*}_i as the shadow price or marginal price of the resource associated with constraint i.

- What if we change b to b' = (10 6 15 -5)^T?
 We have that A⁻¹_Bb = (35/3) -1 10 5/3)^T, so B = (1, 6, 7, 4) is no longer primal feasible. It is still dual feasible.
- We can use dual simplex by replacing entries a_{0,0} to a_{m,0} in the final tableau. Replace a_{0,0} with -c^T_BA⁻¹_Bb' = -(π*)^Tb' = -⁷⁴/₃ 3π^{*}₄ = -⁹⁵/₃ and replace (a_{0,1} ... a_{0,m})^T with A⁻¹_Bb'.
 So we start dual simplex with the following tableau

					0				
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	X7	<i>x</i> ₈
-z	-95/3	0	12	20/3	0	13/3	0	0	7/3
x_1	35/3	1	-2	1/3	0	-4/3	0	0	-1/3
x ₆	-1	0	4	0	0	0	1	0	1
<i>X</i> 7	10	0	4	0	0	-2	0	1	1
x_4	5/3	0	$^{-1}$	-2/3	1	-1/3	0	0	-1/3

▶ This LP is infeasible, because row 2 corresponds to the equation $-1 = 4x_2 + x_6 + x_8$ which has not solution with $x_2, x_6, x_8 \ge 0$.

 \blacktriangleright What does this imply about the dual? It is unbounded because π^* is a feasible solution for the dual and the primal is infeasible.