Homework 2 M588, 2015 SPRING DUE: March 4 (W)

NAME:	 	 	 	 	
SCORE:					

- 1. We say that a step in the simplex method is *degenerate* if the cost function stays fixed. In this question you show that it is sometimes necessary to take degenerate steps. That is, show that there is a simplex tableau whose corresponding basic feasible solution is not optimal such that no matter which possible pivot column is selected the step is degenerate.
- 2. Show that an LP cannot cycle unless there exists a basic feasible solution \boldsymbol{x} such that $x_j = 0$ for at least n m + 2 indices $j \in \{1, \ldots, n\}$.
- 3. Consider the following LP, which we call Problem P:

$$\begin{array}{ccccc} \min & x_1 & & +x_3 \\ & x_1 & +2x_2 & & \leq 5 \\ & & x_2 & +2x_3 & = 6 \\ & x_1 & ,2x_3 & ,x_3 & \geq 0 \end{array}$$

- (a) Solve P by the simplex algorithm.
- (b) Write the dual of P.
- (c) Write the complementary slackness conditions for this problem and use them to solve the dual D. Check your answer by evaluating the optimal cost of P and D.
- 4. Prove Lemma 8.10 from the book, i.e., prove that for any $\boldsymbol{a} \in \mathbb{R}^n$, there exists a matrix R such that $RR^T = I$ and $R\boldsymbol{a} = (\|\boldsymbol{a}\|, 0, \dots, 0)^T$.
- 5. Prove the following variant of Farkas lemma. You can use either the strong duality theorem or the variant of Farkas lemma that is the book (Theorem 3.5). There exists $\boldsymbol{x} \in \mathbb{R}^n$ such that $A\boldsymbol{x} \leq \boldsymbol{b}$ if and only if for all $\boldsymbol{y} \in \mathbb{R}^m$ if $\boldsymbol{y} \geq \boldsymbol{0}$ and $\boldsymbol{y}^T A = \boldsymbol{0}^T$ then $\boldsymbol{y}^T \boldsymbol{b} \geq 0$.

6. I don't care about the -8L and -9L here. If you can prove it for some $-c_1L$ and $-c_2L$, that is OK.

Use the variant of Farkas Lemma proved in the previous problem to prove the following. For any $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$, let $L = \langle A \rangle + \langle b \rangle$, $\eta = 2^{-8L}$, $\varepsilon = 2^{-9L}$ and $P := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b} + \eta \mathbf{1} \}$. For any \mathbf{x} such that $A\mathbf{x} \leq \mathbf{b}$, we have that $P \supseteq B(\mathbf{x}, \varepsilon)$ and if $A\mathbf{x} \leq \mathbf{b}$ has no solutions then $P = \emptyset$.

Hint: You may use the fact that for any matrix rational matrix B and any vector \mathbf{c} , if the system $B\mathbf{x} = \mathbf{c}$ has solution, then the system has a solution \mathbf{x} whose entries have absolute value less than $2^{4(< B > + < \mathbf{c} >)}$, i.e. $\|\mathbf{x}\|_{\infty} \leq 2^{4(< B > + < \mathbf{c} >)}$ and that the statement remain true if we require that a solution \mathbf{x} such that $\mathbf{x} \geq \mathbf{0}$.

Notation: If $x \in \mathbb{Q}$ and x = p/q where p and q are integers and p and q are relatively prime and q > 0, then the size of x is

$$\langle x \rangle := 1 + \lceil \log_2 |p| + 1 \rceil + \lceil \log_2 q + 1 \rceil.$$

If
$$b \in \mathbb{Q}^n$$
 and $A \in \mathbb{Q}^{m \times n}$, then $\langle b \rangle = m + \sum_{i=1}^n \langle b_i \rangle$, $\langle A \rangle = nm + \sum_{i=1}^m \sum_{j=1}^n \langle a_{i,j} \rangle$.