An example of the primal-dual simplex method

Suppose we are given the problem P:

Minimize
$$z = x_1 + 3x_2 + 3x_3 + x_4$$

subject to
$$\begin{cases}
3x_1 + 4x_2 - 3x_3 + x_4 = 2, \\
3x_1 - 2x_2 + 6x_3 - x_4 = 1, \\
6x_1 + 4x_2 + x_4 = 4 \\
x_1, x_2, x_3, x_4 > 0.
\end{cases}$$
(1)

The dual to P is of course the following D

Maximize
$$w = 2\pi_1 + \pi_2 + 4\pi_3$$

subject to
$$\begin{cases}
3\pi_1 + 3\pi_2 + 6\pi_3 \leq 1, \\
4\pi_1 - 2\pi_2 + 4\pi_3 \leq 3, \\
-3\pi_1 + 6\pi_2 \leq 3, \\
\pi_1 - \pi_2 + \pi_3 \leq 1.
\end{cases}$$
(2)

Somebody tells us that probably vector $\pi = (1/3, 0, 0)^T$ is an optimal vector in **D**. Note that the value of w with this π is 2/3. We start checking this version using complementary slackness. First, we plug this vector in **D** and see that it is a feasible vector and only the first inequality is binding. Hence our first set J is $\{1\}$. In particular, if π is an optimal vector in **D**, then in the corresponding optimal vector \mathbf{x} of **P** only coordinate x_1 can be non-zero. We try to find it by solving the following restricted primal problem **RP1**:

$$\text{Minimize } \xi = x_1^r + x_2^r + x_3^r
 \text{subject to}
 \begin{cases}
 3x_1 + x_1^r & = 2, \\
 3x_1 + x_2^r & = 1, \\
 6x_1 + x_3^r & = 4, \\
 x_1, x_1^r, x_2^r, x_3^r & \geq 0.
 \end{cases}$$
(3)

Normally, we would use the revised simplex to solve it. But here we will write down all the tableaus. So, the initial tableau is

		x_1	x_1^r	x_2^r	x_3^r
$y_0 = -\xi$	0	0	1	1	1
x_1^r	2	3	1	0	0
x_2^r	1	3	0	1	0
x_3^r	4	6	0	0	1

Excluding x_1^r, x_2^r , and x_3^r from Row 0, we have

		x_1	x_1^r	x_2^r	x_3^r
$y_0 = -\xi$	-7	-12	0	0	0
x_1^r	2	3	1	0	0
x_2^r	1	3	0	1	0
x_3^r	4	6	0	0	1

 x_3^r $y_0 = -\xi \\ x_1^r$ 0 4 0 We pivot on $a_{2,1}$ and get 0 1 -10 1/3 1 0 1/30 -21 0 0

This is the final tableau which proves that our $\pi = (1/3, 0, 0)^T$ is NOT optimal. But this is not only a negative outcome, since we now know how to improve the π . Our new $\tilde{\pi}$ will have the form

$$\tilde{\pi} = \pi + \theta \pi^r, \tag{4}$$

where θ is a positive factor that we will find below and π^r is an optimal vector in the dual **DRP1** to **RP1** which (by definition) is as follows:

$$\text{Maximize } w^r = 2\pi_1^r + \pi_2^r + 4\pi_3^r$$
 subject to
$$\begin{cases} 3\pi_1^r + 3\pi_2^r + 6\pi_3^r \leq 0, \\ \pi_1^r \leq 1, \\ \pi_2^r \leq 1, \\ \pi_3^r \leq 1. \end{cases}$$

We can find π^r , from the last tableau for **RP1**, where the vector (0,4,0) in Row 0 is (by an algebraic theorem) in fact $(1,1,1)-(\pi_1^r,\pi_2^r,\pi_3^r)$. Hence $(\pi_1^r,\pi_2^r,\pi_3^r)=$ (1,1,1)-(0,4,0)=(1,-3,1). Now we choose the maximum θ such that the vector $\widetilde{\pi}^T = (1/3, 0, 0) + \theta(1, -3, 1)$ is feasible in **D**. Plugging this $\widetilde{\pi}$ into the first inequality of **D** we get the inequality

$$\tilde{\pi}^T \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix} = (1/3, 0, 0) \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix} + \theta(1, -3, 1) \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix} = 1 + \theta \cdot 0 = 1 \le 1,$$

which holds for every θ . Similarly, plugging $\tilde{\pi}$ into the second inequality of **D** we get the inequality $4/3 + \theta 14 \le 3$ which holds for $\theta \le 5/42$. Plugging $\tilde{\pi}$ into the third inequality of **D** we get $-1 + \theta(-21) \leq 3$ which holds for every positive θ . Finally, plugging $\tilde{\pi}$ into the fourth inequality of **D** we get $1/3 + \theta \cdot 5 < 1$ which holds for $\theta \le 2/15$. Thus we choose $\theta = 5/42$ and hence our new π (we omit the tilde) is $(1/3,0,0)^T + \frac{5}{42}(1,-3,1)^T = (\frac{19}{42},\frac{-5}{14},\frac{5}{42})^T$. Note that now $w = 2\frac{19}{42} - \frac{5}{14} + 4\frac{5}{42} = \frac{43}{42}$. So, we start our cycle again. We hope that the new π is optimal. Plugging it in

D we see that now $J = \{1, 2\}$. Thus, our new restricted primal **RP2** is

$$\text{Minimize } \xi = x_1^r + x_2^r + x_3^r$$

subject to
$$\begin{cases}
3x_1 + 4x_2 + x_1^r & = 2, \\
3x_1 - 2x_2 + x_2^r & = 1, \\
6x_1 + 4x_2 + x_3^r & = 4, \\
x_1, x_2, x_1^r, x_2^r, x_3^r > 0.
\end{cases} (5)$$

But we do not start from scratch. We use the last tableau of the previous iteration adding there the values of the x_2 -column obtained from knowing B^{-1} :

		x_1	x_2	x_1^r	x_2^r	x_3^r
$y_0 = -\xi$	-3	0	-14	0	4	0
x_1^r	1	0	6	1	-1	0
x_1	1/3	1	-2/3	0	1/3	0
x_3^r	2	0	8	0	-2	1

Here, the second column was obtained using the formulas $\tilde{c}_2 = c_2 - (1, -3, 1) \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix} =$

$$0-14=-14$$
, and $\widetilde{A}_2=B^{-1}A_2=\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1/3 & 0 \\ 0 & -2 & 1 \end{pmatrix}\begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}=\begin{pmatrix} 6 \\ -2/3 \\ 8 \end{pmatrix}$. Note that

 B^{-1} is in the last three rows and columns of the previous tableau.

This is the final tableau which proves that our new π again is not optimal. So, we again correct it using (4). Recall that our restricted dual **DRP2** is

$$\text{Maximize } w^r = 2\pi_1^r + \pi_2^r + 4\pi_3^r$$
 subject to
$$\begin{cases} 3\pi_1^r & +3\pi_2^r & +6\pi_3^r \leq 0, \\ 4\pi_1^r & -2\pi_2^r & +4\pi_3^r \leq 0, \\ \pi_1^r & \leq 1, \\ \pi_2^r & \leq 1, \\ \pi_3^r & \leq 1. \end{cases}$$

Similarly to the previous iteration, we have $(\pi_1^r, \pi_2^r, \pi_3^r) = (1, 1, 1) - (7/3, 5/3, 0) = (-4/3, -2/3, 1)$. To find the maximum θ such that the vector $\tilde{\pi} = (\frac{19}{42}, \frac{5}{14}, \frac{5}{42})^T + \theta(-4/3, -2/3, 1)^T$ is feasible in \mathbf{D} , we plug this $\tilde{\pi}$ into all inequalities of \mathbf{D} . From the first inequality we get

$$\widetilde{\pi}^T \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix} = (\frac{19}{42}, \frac{-5}{14}, \frac{5}{42}) \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix} + \theta(-4/3, -2/3, 1) \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix} = 1 + \theta \cdot (-4 - 2 + 6) = 1 \le 1,$$

which holds for every θ . Similarly, from the second inequality of **D** we get $3 + \theta(-16/3 + 4/3 + 4) \le 3$ which also holds for every θ . From the third inequality of **D** we get $-7/2 + \theta(4 - 4 + 0) \le 3$ which holds for every θ . Finally, from the fourth inequality of **D** we get $13/14 + \theta(-4/3 + 2/3 + 1) \le 1$ which holds for $\theta \le 3/14$.

Thus we choose $\theta = 3/14$ and hence our new π is $(\frac{19}{42}, \frac{-5}{14}, \frac{5}{42})^T + \frac{3}{14}(-4/3, -2/3, 1)^T =$ $(\frac{1}{6}, \frac{-1}{2}, \frac{1}{3})^T$. Note that now $w = 2\frac{1}{6} - \frac{1}{2} + 4\frac{1}{3} = \frac{7}{6}$. We start our cycle again. Now $J = \{1, 2, 4\}$. Thus, our new restricted primal

RP3 is

$$Minimize \xi = x_1^r + x_2^r + x_3^r$$

subject to
$$\begin{cases} 3x_1 + 4x_2 + x_4 + x_1^r & = 2, \\ 3x_1 - 2x_2 - x_4 + x_2^r & = 1, \\ 6x_1 + 4x_2 + x_4 + x_1^r & + x_3^r & = 4, \\ x_1, x_2, x_4, x_1^r, x_2^r, x_3^r & \ge 0. \end{cases}$$

We use the modified last tableau

		x_1	x_2	x_4	x_1^r	x_2^r	x_3^r
$y_0 = -\xi$	-2/3	0	0	-1/3	7/3	5/3	0
x_2	1/6	0	1	1/3	1/6	-1/6	0
x_1	4/9	1	0	-1/9	1/9	2/9	0
x_3^r	2/3	0	0	1/3	-4/3	-2/3	1

where the third column was obtained using the formulas

$$\tilde{c}_4 = c_4 - (-4/3, -2/3, 1) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 0 - 1/3 = -1/3,$$

$$\text{and } \widetilde{A}_4 = B^{-1}A_4 = \left(\begin{array}{cc} 1/6 & -1/6 & 0 \\ 1/9 & 2/9 & 0 \\ -4/3 & -2/3 & 1 \end{array} \right) \left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1/3 \\ -1/9 \\ 1/3 \end{array} \right).$$

We pivot on x_4 -column and Row 1. The result is

		x_1	x_2	x_4	x_1^r	x_2^r	x_3^r
$y_0 = -\xi$	-1/2	0	1	0	5/2	3/2	0
x_4	1/2	0	3	1	1/2	-1/2	0
x_1	1/2	1	1/3	0	1/6	1/6	0
x_3^r	1/2	0	-1	0	-3/2	-1/2	1

As above, the optimal vector of the new restricted dual **DRP3** is $(\pi_1^r, \pi_2^r, \pi_3^r)^T =$ $(1,1,1)^T - (5/2,3/2,0)^T = (-3/2,-1/2,1)^T$. To find the maximum θ such that the vector $\tilde{\pi} = (\frac{1}{6},\frac{-1}{2},\frac{1}{3})^T + \theta(-3/2,-1/2,1)^T$ is feasible in \mathbf{D} , we do not need to check inequalities in $\hat{\mathbf{D}}$ corresponding to x_1 and x_4 , since they are in the basis of **RP3**. From the remaining two inequalities we get

$$\widetilde{\pi}^T \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = (\frac{1}{6}, \frac{-1}{2}, \frac{1}{3}) \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} + \theta(-3/2, -1/2, 1) \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = -7/2 + \theta \cdot (9/2 - 3 + 0) \le 3,$$

which holds for $\theta \le 13/3$, and $3 + \theta(-6 + 1 + 4) \le 3$ which holds for each positive θ .

Thus we choose $\theta = 13/3$ and hence our new π is $(\frac{1}{6}, \frac{-1}{2}, \frac{1}{3})^T + \frac{13}{3}(-3/2, -1/2, 1)^T = (-\frac{19}{3}, \frac{-8}{3}, \frac{14}{3})^T$. Note that now $w = -2\frac{19}{3} - \frac{8}{3} + 4\frac{14}{3} = \frac{10}{3}$. We start our cycle again. Now $J = \{1, 3, 4\}$. Note that 2 is not in J anymore.

The tableau corresponding to the new restricted primal **RP4** is

We got the column for x_3 using the formulas

$$\widetilde{c}_3 = c_3 - (-3/2, -1/2, 1) \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = 0 - 9/2 + 6/2 = -3/2,$$

and
$$\widetilde{A}_3 = B^{-1}A_3 = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/6 & 1/6 & 0 \\ -3/2 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = \begin{pmatrix} -9/2 \\ 1/2 \\ 3/2 \end{pmatrix}.$$

Pivoting on x_3 -column and Row 3 we

		x_1	x_3	x_4	x_1^r	x_2^r	x_3^r
$y_0 = -\xi$	0	0	0	0	1	1	1
x_4	2	0	0	1	-4	-2	3
x_1	1/3	1	0	0	2/3	1/3	-1/3
x_3	1/3	0	1	0	-1	-1/3	2/3

So, vector $(-\frac{19}{3}, \frac{-8}{3}, \frac{14}{3})^T$ indeed is an optimal vector in **D** and the corresponding optimal vector in **P** is $(1/3, 0, 1/3, 2)^T$. The optimal cost is 10/3.