07:51 Wednesday $1^{\text {st }}$ April, 2015
Math 482 Notes: Primal Dual simplex
We start with an LP in standard form which we call P,

$$
\max c^{T} x \text { such that } A x=b, x \geq 0
$$

We assume $b \geq 0$, if $b_{i}<0$, we can multiply constraint i by -1 . We call the dual D

$$
\min b^{T} y \text { such that } A^{T} y \geq c
$$

Complementary slackness says the following: (a_{i}^{T} is the i th row of A and A_{j} is the j th column of A) if x and y are feasible for P and D , respectively, then x and y are both optimal if and only if

$$
\begin{align*}
y_{i}\left(b_{i}-a_{i}^{T} x\right)=0 & \forall i \in[m] \tag{1}\\
\left(A_{j}^{T} y-c_{j}\right) x_{j}=0 & \forall j \in[n] . \tag{2}
\end{align*}
$$

Note that since P is in equational form, when x is feasible for $\mathrm{P},(1)$ is always satisfied.
We start with some y that is feasible for D . This will always be given or easily obtained (e.g. $y=0$ is feasible).

Our goal now is to write an LP that checks if y is optimal. Let

$$
J=\left\{j \in[n]: A_{j}^{T} y=c_{j}\right\}
$$

By complementary slackness, if y is optimal, then there exists $x \in \mathbb{R}^{n}$ such that $A x=b$ and $x \geq 0$ and $x_{j}=0$ for all $j \notin J$. Furthermore, any such x is optimal for P .
So we define the following LP which we call the restricted primal (RP): Let $\hat{x}=\left[\frac{x^{r}}{x_{J}}\right]$ where $x^{r} \in \mathbb{R}^{m}$ are new variables

$$
\operatorname{Max} \xi=\left[-\mathbf{1}^{T} \mid \mathbf{0}\right] \hat{x} \text { subject to }\left[I_{m} \mid A_{J}\right] \hat{x} \text { and } \hat{x} \geq 0
$$

Note that (RP) is feasible ($x^{r}=b$ and $x_{J}=0$) and bounded above by 0 , so we can solve (RP) with simplex (we usually use revised simplex), and get a optimal solution. Let $A=\left[a_{i, j}\right]$ be the final tableau. If $\xi_{o p t}=-a_{0,0}=0$, then $x^{r}=0$, so $A_{J} x_{J}=b$, and if we let $x_{j}=0$ for all $j \notin J$, then $A x=b$ and $x \geq 0$. Therefore, x and y are optimal for P and D , respectively.

So assume $\xi_{\text {opt }}<0$. This implies that y was not optimal. We wish to improve y using an optimal solution \bar{y} to the dual of the restricted primal (DRP). Using the dualization recipe we have that (DRP) is

$$
\min b^{T} y \text { subject to } A_{J}^{T} y \geq 0 \text { and } y_{i} \geq-1 \text { for all } i \in[m] .
$$

We can extract an optimal solution to (DRP) from the final tableau A, since when B is a basis that correspond to an optimal solution of (RP), $c_{B} A_{B}^{-1}$ is an optimal solution to (DRP). So we set $\bar{y}=c_{B} A_{B}^{-1}$ and note that, for any $j \in[n], a_{0, j}=c_{j}-\bar{y}^{T} A_{j}$. So since, for any $j \in[m], c_{j}=-1$ and $A_{j}=e_{j}$ (here e_{j} is the j th standard basis vector) we have that $a_{0, j}=-1-\bar{y}_{j}$. So we have that for any $i \in[m], \bar{y}_{i}=-1-a_{0, i}$.

Note that, by strong duality, $b^{T} \bar{y}=\xi_{\text {opt }}$ and recall that we are assuming $\xi_{o p t}<0$. Let $y^{*}:=y+\theta \bar{y}$ for some $\theta>0$. We will pick θ so that y^{*} is a new, better feasible solution for D. First, note that

$$
b^{T} y^{*}=b^{T} y+\theta b^{T} \bar{y}<b^{T} y
$$

so y^{*} will indeed be a better feasible solution than y if it is feasible and $\theta>0$.

If $A_{j}^{T} \bar{y} \geq 0$ for all $j \notin J$, then, since \bar{y} is feasible for (DRP), $A_{j}^{T} \bar{y} \geq 0$ for all $j \in[n]$, and $A_{j}^{T} y^{*}=A_{j}^{T} y+\theta A_{j}^{T} \bar{y} \leq c_{j}$ for any $\theta>0$. So as we let θ go to infinity, y^{*} is always feasible for D and $b^{T} y^{*}$ goes to $-\infty$. So D is unbounded and P is infeasible.

Otherwise, we let

$$
\theta=\min _{\substack{j \notin J \\ A_{j}^{T} \bar{y}<0}}\left\{\frac{c_{j}-A_{j}^{T} y}{A_{j}^{T} \bar{y}}\right\}
$$

Note that $\theta>0$. Furthermore, for any $j \in[n]$, either $A_{j}^{T} \bar{y} \geq 0$ and $A_{j}^{T} y^{*} \geq c_{j}$ for any $\theta>0$, or $j \notin J$ and $A_{j}^{T} \bar{y}<0$, so

$$
A_{j}^{T} y^{*}=A_{j}^{T} y+\theta A_{j}^{T} \bar{y} \geq c_{j}+\frac{c_{j}-A_{j}^{T} y}{A_{j}^{T} \bar{y}} A_{j}^{T} \bar{y}=c_{j} .
$$

Therefore, y^{*} is feasible and $b^{T} y^{*}<b^{T} y$. We can now replace y with y^{*} and repeat the process, i.e. construct a new (RP), solve it with simplex, etc. We are finished when the optimal value of (RP) is 0 .

