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Math 482 Notes: Primal Dual simplex

We start with an LP in standard form which we call P,

max cTx such that Ax = b, x ≥ 0.

We assume b ≥ 0, if bi < 0, we can multiply constraint i by −1. We call the dual D

min bTy such that ATy ≥ c.

Complementary slackness says the following: (aTi is the ith row of A and Aj is the jth
column of A) if x and y are feasible for P and D, respectively, then x and y are both optimal
if and only if

yi(bi − aTi x) = 0 ∀i ∈ [m](1)

(AT
j y − cj)xj = 0 ∀j ∈ [n].(2)

Note that since P is in equational form, when x is feasible for P, (1) is always satisfied.
We start with some y that is feasible for D. This will always be given or easily obtained

(e.g. y = 0 is feasible).
Our goal now is to write an LP that checks if y is optimal. Let

J = {j ∈ [n] : AT
j y = cj}.

By complementary slackness, if y is optimal, then there exists x ∈ Rn such that Ax = b and
x ≥ 0 and xj = 0 for all j /∈ J . Furthermore, any such x is optimal for P.

So we define the following LP which we call the restricted primal (RP): Let x̂ =

[
xr

xJ

]
where xr ∈ Rm are new variables

Max ξ = [−1T |0]x̂ subject to [Im|AJ ] x̂ and x̂ ≥ 0.

Note that (RP) is feasible (xr = b and xJ = 0) and bounded above by 0, so we can solve (RP)
with simplex (we usually use revised simplex), and get a optimal solution. Let A = [ai,j] be
the final tableau. If ξopt = −a0,0 = 0, then xr = 0, so AJxJ = b, and if we let xj = 0 for all
j /∈ J , then Ax = b and x ≥ 0. Therefore, x and y are optimal for P and D, respectively.

So assume ξopt < 0. This implies that y was not optimal. We wish to improve y using an
optimal solution ȳ to the dual of the restricted primal (DRP). Using the dualization recipe
we have that (DRP) is

min bTy subject to AT
J y ≥ 0 and yi ≥ −1 for all i ∈ [m].

We can extract an optimal solution to (DRP) from the final tableau A, since when B is
a basis that correspond to an optimal solution of (RP), cBA

−1
B is an optimal solution to

(DRP). So we set y = cBA
−1
B and note that, for any j ∈ [n], a0,j = cj − yTAj. So since, for

any j ∈ [m], cj = −1 and Aj = ej (here ej is the jth standard basis vector) we have that
a0,j = −1− yj. So we have that for any i ∈ [m], yi = −1− a0,i.

Note that, by strong duality, bTy = ξopt and recall that we are assuming ξopt < 0. Let
y∗ := y + θy for some θ > 0. We will pick θ so that y∗ is a new, better feasible solution for
D. First, note that

bTy∗ = bTy + θbTy < bTy

so y∗ will indeed be a better feasible solution than y if it is feasible and θ > 0.
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If AT
j y ≥ 0 for all j /∈ J , then, since y is feasible for (DRP), AT

j y ≥ 0 for all j ∈ [n], and

AT
j y
∗ = AT

j y + θAT
j y ≤ cj for any θ > 0. So as we let θ go to infinity, y∗ is always feasible

for D and bTy∗ goes to −∞. So D is unbounded and P is infeasible.
Otherwise, we let

θ = min
j /∈J

AT
j y<0

{
cj − AT

j y

AT
j y

}

Note that θ > 0. Furthermore, for any j ∈ [n], either AT
j y ≥ 0 and AT

j y
∗ ≥ cj for any θ > 0,

or j /∈ J and AT
j y < 0, so

AT
j y
∗ = AT

j y + θAT
j y ≥ cj +

cj − AT
j y

AT
j y

AT
j y = cj.

Therefore, y∗ is feasible and bTy∗ < bTy. We can now replace y with y∗ and repeat the
process, i.e. construct a new (RP), solve it with simplex, etc. We are finished when the
optimal value of (RP) is 0.
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