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Math 482 Notes: Primal Dual simplex
We start with an LP in standard form which we call P,

max ¢! x such that Az = b,z > 0.
We assume b > 0, if b; < 0, we can multiply constraint ¢+ by —1. We call the dual D
min b’y such that ATy > c.
Complementary slackness says the following: (a] is the ith row of A and A; is the jth

column of A) if x and y are feasible for P and D, respectively, then = and y are both optimal

if and only if
(1) yi(bi —alxz) =0  Vie[m]
(2) (ATy —cj)z; =0 Vj€[n].
Note that since P is in equational form, when z is feasible for P, (1) is always satisfied.
We start with some y that is feasible for D. This will always be given or easily obtained
(e.g. y =0 is feasible).
Our goal now is to write an LP that checks if y is optimal. Let
J=A{j€eln]: AjTy:cj}.
By complementary slackness, if y is optimal, then there exists x € R™ such that Ax = b and

x>0 and z; =0 for all j ¢ J. Furthermore, any such z is optimal for P.

So we define the following LP which we call the restricted primal (RP): Let & = [ i 1
J

where 2" € R™ are new variables
Max & = [~17]0]4 subject to [I,,]A;] 2 and & > 0.

Note that (RP) is feasible (z" = b and z; = 0) and bounded above by 0, so we can solve (RP)
with simplex (we usually use revised simplex), and get a optimal solution. Let A = [a; ;] be
the final tableau. If v = —agp = 0, then 2" = 0, so Ayx; = b, and if we let z; = 0 for all
j & J, then Ax =b and z > 0. Therefore, x and y are optimal for P and D, respectively.

So assume &y < 0. This implies that y was not optimal. We wish to improve y using an
optimal solution ¢ to the dual of the restricted primal (DRP). Using the dualization recipe
we have that (DRP) is

min b’y subject to ATy > 0 and y; > —1 for all i € [m].

We can extract an optimal solution to (DRP) from the final tableau A, since when B is
a basis that correspond to an optimal solution of (RP), cpAz' is an optimal solution to
(DRP). So we set § = cgAg' and note that, for any j € [n], ag; = ¢; — yT A;. So since, for
any j € [m], ¢; = —1 and A; = e; (here ¢; is the jth standard basis vector) we have that
ap,j = —1 —7;. So we have that for any i € [m], y; = —1 — ag;.

Note that, by strong duality, b’y = &,,; and recall that we are assuming &,y < 0. Let
y* =y + 6y for some 6§ > 0. We will pick 8 so that y* is a new, better feasible solution for
D. First, note that

Vly* =bTy + 0075 < by
so y* will indeed be a better feasible solution than y if it is feasible and 6 > 0.
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If ATy > 0 for all j ¢ J, then, since 7 is feasible for (DRP), ATy > 0 for all j € [n], and
ATy = ATy + ATy < ¢; for any 6 > 0. So as we let 6 go to infinity, y* is always feasible
for D and b’y* goes to —oo. So D is unbounded and P is infeasible.

Otherwise, we let

Note that > 0. Furthermore, for any j € [n], either AT7 >0 and ATy* > ¢; for any 6 > 0,
or j ¢ Jand ATy <0, so
T
T & T T ¢ — Ay
Aj :Ajy—l—QAijcj—i—A—ngAjy:cj.
J

Therefore, y* is feasible and bTy* < bTy. We can now replace y with y* and repeat the
process, i.e. construct a new (RP), solve it with simplex, etc. We are finished when the
optimal value of (RP) is 0.



