Math 482 HW3

Name: ____

Due Friday, February 13, 2015

1. (4 points) Solve the problem on the tableau using the simplex method and draw the corresponding picture in the plane Ox_1x_2 . Mark the points corresponding to the b.f.s. of your solution.

		x_1	x_2	x_3	x_4	x_5
-Z	0	3	4	0	0	0
$\mathbf{x_3}$	6	2	1	1	0	0
$\mathbf{x_4}$	2	1	-2	0	1	0
$\mathbf{x_5}$	1	-3	9	0	0	1

2. (8 points) Introduce 3 artificial variables and solve with two-phase simplex algorithm the LP represented by the tableau below.

		x_1	x_2	x_3	x_4	x_5
-Z	0	-4	-8	-14	-2	-10
	14	2	2	4	2	4
	12	2	4	6	2	2
	8	2	2	2	4	2

3. (4 points) Suppose that at a stage of the simplex algorithm, we have the have the basic $B = \{1, 4, 6\}$ and the following tableau $\mathcal{T}(B)$

The inverse of the current basis is

$$A_B^{-1} = [A_1, A_4, A_6]^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 2 & 1 \end{pmatrix}$$

and

$$c_B^T = [c_1, c_4, c_6] = [-1, -3, 1]$$

Find vectors c and b and the matrix A that correspond to the original linear program.

4. (4 points) Solve the LP in the handout http://www.math.uiuc.edu/~molla/2015_ spring_math482/cycle.pdf according to Bland's anticycling algorithm. You do not need to repeat any initial steps that are identical to the solution in the handout.