
An example of the primal–dual simplex method

Suppose we are given the problem P:

Maximize z = −x1 − 3x2 − 3x3 − x4
subject to


3x1 +4x2 −3x3 +x4 = 2,
3x1 −2x2 +6x3 −x4 = 1,
6x1 +4x2 +x4 = 4,
x1, x2, x3, x4 ≥ 0.

(1)

The dual to P is of course the following D

Minimize w = 2π1 + π2 + 4π3

subject to


3π1 +3π2 +6π3 ≥ −1,
4π1 −2π2 +4π3 ≥ −3,
−3π1 +6π2 ≥ −3,
π1 −π2 +π3 ≥ −1.

(2)

Somebody tells us that probably vector π = (−1/3, 0, 0)T is an optimal vector
in D. Note that the value of w with this π is −2/3. We start checking this version
using complementary slackness. First, we plug this vector in D and see that it is a
feasible vector and only the first inequality is binding. Hence our first set J is {1}.
In particular, if π is an optimal vector in D, then in the corresponding optimal vector
x of P only coordinate x1 can be non-zero. We try to find it by solving the following
restricted primal problem RP1:

Maximize ξ = −xr1 − xr2 − xr3
subject to


3x1 +xr1 = 2,
3x1 +xr2 = 1,
6x1 +xr3 = 4,
x1, xr1, xr2, xr3 ≥ 0.

(3)

Normally, we would use the revised simplex to solve it. But here we will write
down all the tableaus. So, the initial tableau is

x1 xr1 xr2 xr3
y0 = −ξ 0 0 −1 −1 −1

xr1 2 3 1 0 0
xr2 1 3 0 1 0
xr3 4 6 0 0 1

Excluding xr1, x
r
2, and xr3 from Row 0, we have

x1 xr1 xr2 xr3
y0 = −ξ 7 12 0 0 0

xr1 2 3 1 0 0
xr2 1 3 0 1 0
xr3 4 6 0 0 1

1



We pivot on a2,1 and get

x1 xr1 xr2 xr3
y0 = −ξ 3 0 0 −4 0

xr1 1 0 1 −1 0
x1 1/3 1 0 1/3 0
xr3 2 0 0 −2 1

This is the final tableau which proves that our π = (−1/3, 0, 0)T is NOT optimal.
But this is not only a negative outcome, since we now know how to improve the π.
Our new π∗ will have the form

π∗ = π + θπ, (4)

where θ is a positive factor that we will find below and π is an optimal vector in the
dual DRP1 to RP1 which (by definition) is as follows:

Minimize wr = 2π1 + π2 + 4π3

subject to


3π1 +3π2 +6π3 ≥ 0,
π1 ≥ −1,

π2 ≥ −1,
π3 ≥ −1.

We can find π, from the last tableau for RP1, where the vector (0,−4, 0) in
Row 0 is in fact (−1,−1,−1) − (π1, π2, π3). Hence (π1, π2, π3) = (−1,−1,−1) −
(0,−4, 0) = (−1, 3,−1). Now we choose the maximum θ such that the vector (π∗)T =
(−1/3, 0, 0) + θ(−1, 3,−1) is feasible in D. Plugging this π∗ into the first inequality
of D we get the inequality

(π∗)T

 3
3
6

 = (−1/3, 0, 0)

 3
3
6

 + θ(−1, 3,−1)

 3
3
6

 = −1 + θ · 0 = −1 ≥ −1,

which holds for every θ. Similarly, plugging π∗ into the second inequality of D we
get the inequality −4/3− θ14 ≥ −3 which holds for θ ≤ 5/42. Plugging π∗ into the
third inequality of D we get 1+θ(21) ≥ −3 which holds for every positive θ. Finally,
plugging π∗ into the fourth inequality of D we get −1/3 + θ · −5 ≥ −1 which holds
for θ ≤ 2/15. Thus we choose θ = 5/42 and hence our new π = π∗ is (−1/3, 0, 0)T +
5
42

(−1, 3,−1)T = (−19
42
, 5
14
,− 5

42
)T . Note that now w = 2−19

42
+ −5

14
+ 4−5

42
= −43

42
.

So, we start our cycle again. We hope that the new π is optimal. Plugging it in
D we see that now J = {1, 2}. Thus, our new restricted primal RP2 is

Maximize ξ = −xr1 − xr2 − xr3
subject to 

3x1 +4x2 +xr1 = 2,
3x1 −2x2 +xr2 = 1,
6x1 +4x2 +xr3 = 4,
x1, x2, xr1, xr2, xr3 ≥ 0.

(5)
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But we do not start from scratch. We use the last tableau of the previous iteration
adding there the values of the x2-column obtained from knowing A−1

B :

x1 x2 xr1 xr2 xr3
y0 = −ξ 3 0 14 0 −4 0

xr1 1 0 6 1 −1 0
x1 1/3 1 −2/3 0 1/3 0
xr3 2 0 8 0 −2 1

Here, the second column was obtained using the formulas c̃2 = c2−(−1, 3, −1)

 4
−2
4

 =

0 + 14 = 14, and Ã2 = A−1
B A2 =

 1 −1 0
0 1/3 0
0 −2 1


 4
−2
4

 =

 6
−2/3

8

 . Note that

A−1
B is in the last three rows and columns of the previous tableau.

We pivot on a1,2 and get

x1 x2 xr1 xr2 xr3
y0 = −ξ 2/3 0 0 −7/3 −5/3 0

x2 1/6 0 1 1/6 −1/6 0
x1 4/9 1 0 1/9 2/9 0
xr3 2/3 0 0 −4/3 −2/3 1

This is the final tableau which proves that our new π again is not optimal. So,
we again correct it using (4). Recall that our restricted dual DRP2 is

Minimize wr = 2π1 + π2 + 4π3

subject to


3π1 +3π2 +6π3 ≥ 0,
4π1 −2π2 +4π3 ≥ 0,
π1 ≥ −1,

π2 ≥ −1,
π3 ≥ −1.

Similarly to the previous iteration, we have (π1, π2, π3) = (−1,−1,−1)−(−7/3,−5/3, 0) =
(4/3, 2/3,−1). To find the maximum θ such that the vector π∗ = (−19

42
, 5
14
,− 5

42
)T +

θ(4/3, 2/3,−1)T is feasible in D, we plug this π∗ into all inequalities of D. From the
first inequality we get

(π∗)T

 3
3
6

 = (−19

42
,

5

14
,− 5

42
)

 3
3
6

+θ(4/3, 2/3,−1)

 3
3
6

 = −1+θ·(4+2−6) = −1 ≥ −1,

which holds for every θ. Similarly, from the second inequality of D we get −3 +
θ(16/3− 4/3− 4) ≥ −3 which also holds for every θ. From the third inequality of D
we get 7/2 + θ(−4 + 4 + 0) ≥ −3 which holds for every θ. Finally, from the fourth
inequality of D we get −13/14 + θ(4/3− 2/3− 1) ≥ −1 which holds for θ ≤ 3/14.
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Thus we choose θ = 3/14 and hence our new π is (−19
42
, 5
14
,− 5

42
)T+ 3

14
(4/3, 2/3,−1)T =

(−1
6
, 1
2
,−1

3
)T . Note that now w = 2−1

6
+ 1

2
+ 4−1

3
= −7

6
.

We start our cycle again. Now J = {1, 2, 4}. Thus, our new restricted primal
RP3 is

Maximize ξ = xr1 + xr2 + xr3

subject to
3x1 +4x2 +x4 +xr1 = 2,
3x1 −2x2 −x4 +xr2 = 1,
6x1 +4x2 +x4 +xr3 = 4,
x1, x2, x4, xr1, xr2, xr3 ≥ 0.

We use the modified last tableau

x1 x2 x4 xr1 xr2 xr3
y0 = −ξ 2/3 0 0 1/3 −7/3 −5/3 0

x2 1/6 0 1 1/3 1/6 −1/6 0
x1 4/9 1 0 −1/9 1/9 2/9 0
xr3 2/3 0 0 1/3 −4/3 −2/3 1

where the third column was obtained using the formulas

c̃4 = c4 − (4/3, 2/3,−1)

 1
−1
1

 = 0 + 1/3 = 1/3,

and Ã4 = A−1
B A4 =

 1/6 −1/6 0
1/9 2/9 0
−4/3 −2/3 1


 1
−1
1

 =

 1/3
−1/9
1/3

 .
We pivot on x4-column and Row 1. The result is

x1 x2 x4 xr1 xr2 xr3
y0 = −ξ 1/2 0 −1 0 −5/2 −3/2 0

x4 1/2 0 3 1 1/2 −1/2 0
x1 1/2 1 1/3 0 1/6 1/6 0
xr3 1/2 0 −1 0 −3/2 −1/2 1

As above, the optimal vector of the new restricted dual DRP3 is (π1, π2, π3)
T =

(−1,−1,−1)T − (−5/2,−3/2, 0)T = (3/2, 1/2,−1)T . To find the maximum θ such
that the vector π∗ = (−1

6
, 1
2
,−1

3
)T + θ(3/2, 1/2,−1)T is feasible in D, we do not need

to check inequalities in D corresponding to x1 and x4, since they are in the basis of
RP3. From the remaining two inequalities we get

(π∗)T

 −3
6
0

 = (−1

6
,
1

2
,−1

3
)

 −3
6
0

+θ(3/2,−1/2,−1)

 3
−6
0

 = 7/2+θ·(−9/2+3+0) ≥ −3,
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which holds for θ ≤ 13/3, and −3 + θ(6− 1− 4) ≥ −3 which holds for each positive
θ.

Thus we choose θ = 13/3 and hence our new π is (−1
6
, 1
2
,−1

3
)T+13

3
(3/2, 1/2,−1)T =

(19
3
, 8
3
,−14

3
)T . Note that now w = −2−19

3
+ 8

3
− 414

3
= −10

3
.

We start our cycle again. Now J = {1, 3, 4}. Note that 2 is not in J anymore.
The tableau corresponding to the new restricted primal RP4 is

x1 x3 x4 xr1 xr2 xr3
y0 = −ξ 1/2 0 3/2 0 −5/2 −3/2 0

x4 1/2 0 −9/2 1 1/2 −1/2 0
x1 1/2 1 1/2 0 1/6 1/6 0
xr3 1/2 0 3/2 0 −3/2 −1/2 1

We got the column for x3 using the formulas

c̃3 = c3 − (3/2, 1/2,−1)

 −3
6
0

 = 0 + 9/2− 6/2 = 3/2,

and Ã3 = A−1
B A3 =

 1/2 −1/2 0
1/6 1/6 0
−3/2 −1/2 1


 −3

6
0

 =

 −9/2
1/2
3/2

 .
Pivoting on x3-column and Row 3 we get

x1 x3 x4 xr1 xr2 xr3
y0 = −ξ 0 0 0 0 1 1 1

x4 2 0 0 1 −4 −2 3
x1 1/3 1 0 0 2/3 1/3 −1/3
x3 1/3 0 1 0 −1 −1/3 2/3

So, vector (19
3
, 8
3
,−14

3
)T indeed is an optimal vector in D and the corresponding

optimal vector in P is (1/3, 0, 1/3, 2)T . The optimal cost is −10/3.
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