An example of the revised 2-phase simplex method - CORRECTED

Suppose we are given the problem

subject to

Maximize
$$z = 19x_1 + 13x_2 + 12x_3 + 17x_4$$

$$\begin{cases}
3x_1 + 2x_2 + x_3 + 2x_4 &= 225, \\
x_1 + x_2 + x_3 + x_4 &= 117, \\
4x_1 + 3x_2 + 3x_3 + 4x_4 &= 420 \\
x_1, x_2, x_3, x_4 \geq 0.
\end{cases}$$
(1)

Add to each of the equations its own variable y_i and consider the auxiliary problem of the maximization of $\xi = -y_1 - y_2 - y_3$. Adding each equation from Row 0 we get the following tableau.

		y_1	y_2	y_3	x_1	x_2	x_3	x_4
$y_0 = -\xi$	762	0	0	0	8	6	5	7
y_1	225	1	0	0	3	2	1	2
y_2	117	0	1	0	1	1	1	1
y_3	420	0	0	1	4	3	3	4

The first four columns of this tableau form our matrix CARRY-0. Following Bland's Rule, the pivot column corresponds to x_1 . The best ratio is in Row 1. Pivoting, we calculate only elements in the first four columns. Our CARRY-1 is

		y_1	y_2	y_3
$y_0 = -\xi$	162	-8/3	0	0
x_1	75	1/3	0	0
y_2	42	-1/3	1	0
y_3	120	-4/3	0	1

Now we calculate \overline{d}_j using the formula

$$\overline{d}_j = d_j - \pi^T A_j,\tag{2}$$

where $-\pi^T$ is the vector in the last 3 entries of Row 0, and A_j is the *j*th column of the original matrix A. Since x_1 is in the basis, we first try \overline{d}_2 :

$$\overline{d}_2 = 6 + (-8/3, 0, 0) \begin{pmatrix} 2\\1\\3 \end{pmatrix} = 6 - 16/3 = 2/3 > 0.$$

So we will pivot on x_2 . We calculate the column \tilde{A}_2 using the formula

$$\widetilde{A}_j = A_B^{-1} A_j, \tag{3}$$

where A_B^{-1} is formed by the last 3 columns and 3 rows of the last tableau. We have $\tilde{A}_2 = \begin{pmatrix} 1/3 & 0 & 0 \\ -1/3 & 1 & 0 \\ -4/3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/3 \\ 1/3 \end{pmatrix}$. Adding column $\begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \\ 1/3 \end{pmatrix}$ to the last

tableau and pivoting on the first row we get CARRY-2:

		y_1	y_2	y_3
$y_0 = -\xi$	87	-3	0	0
x_2	225/2	1/2	0	0
y_2	9/2	-1/2	1	0
y_3	165/2	-3/2	0	1

Since x_2 is in the basis and x_1 just got out of it, we first calculate \overline{d}_3 :

$$\overline{d}_3 = 5 + (-3, 0, 0) \begin{pmatrix} 1\\ 1\\ 3 \end{pmatrix} = 2 > 0.$$

Then similarly to above $\widetilde{A}_3 = \begin{pmatrix} 1/2 & 0 & 0\\ -1/2 & 1 & 0\\ -3/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 1\\ 3 \end{pmatrix} = \begin{pmatrix} 1/2\\ 1/2\\ 3/2 \end{pmatrix}$. Adding column $\begin{pmatrix} 2\\ 1/2\\ 1/2\\ 1/2\\ 3/2 \end{pmatrix}$ to the last tableau and pivoting on the second row we get CARRY-3:

		y_1	y_2	y_3
$y_0 = -\xi$	69	-1	-4	0
x_2	108	1	-1	0
x_3	9	-1	2	0
y_3	69	0	-3	1

Now we should check \overline{d}_1 again and it turns out to be positive:

$$\overline{d}_1 = 8 + (-1, -4, 0) \begin{pmatrix} 3\\1\\4 \end{pmatrix} = 1 > 0.$$

Then
$$\widetilde{A}_1 = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
. Adding column $\begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$ to the last

tableau and pivoting on the first row we get CARRY-4:

		y_1	y_2	y_3
$y_0 = -\xi$	15	-3/2	-7/2	0
x_1	54	1/2	-1/2	0
x_3	63	-1/2	3/2	0
y_3	15	-1/2	-5/2	1

Note that x_1 first entered the basis, then exited it, and now entered again. Since x_1 and x_3 are in the basis and x_2 was just removed from the basis, we know x_1, x_2 and x_3 will not enter the basis on this step. So we calculate \overline{d}_4 :

$$\overline{d}_4 = 7 + (-3/2, -7/2, 0) \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} = 1/2 > 0.$$

Then
$$\widetilde{A}_4 = \begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 3/2 & 0 \\ -1/2 & -5/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$
. Adding column $\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$ to the

last tableau and pivoting on the last row we get CARRY-5:

		y_1	y_2	y_3
$y_0 = -\xi$	0	-1	-1	-1
x_1	39	1	2	-1
x_3	48	0	4	-1
x_4	30	-1	-5	2

Thus we found a basic feasible solution of the original problem. Now we replace the row $-\mathbf{d}_B^T A_B^{-1}$ (the last 3 entries) by the row

$$-\mathbf{c}_B^T A_B^{-1} = -(19, 12, 17) \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ -1 & -5 & 2 \end{pmatrix} = (-2, -1, -3).$$

Also, the current value of -z is

$$-\mathbf{c}_B^T A_B^{-1} \mathbf{b} = (-2, -1, -3) \begin{pmatrix} 225\\117\\420 \end{pmatrix} = -1827.$$

Hence, our CARRY-6 is

		y_1	y_2	y_3
$x_0 = -z$	-1827	-2	-1	-3
x_1	39	1	2	-1
x_3	48	0	4	-1
x_4	30	-1	-5	2

Since x_1 , x_3 and x_4 are in the basis we only need to check column 2. $\bar{c}_2 = 13 + (-2, -1, -3) \begin{pmatrix} 2\\1\\3 \end{pmatrix} = -14 < 0$, Since \bar{c}_2 is negative, the optimal value is 1827 attained at (39, 0, 48, 30).