Second example of the simplex method

Suppose we are given the problem

Maximize
$$z = x_1 - x_2 + x_3$$

(1) subject to
$$\begin{cases} 2x_1 & -x_2 & +2x_3 & +x_4 & = 4\\ 2x_1 & -3x_2 & +x_3 & +x_5 & = -5\\ -x_1 & +x_2 & -2x_3 & +x_6 & = -1\\ x_1, & x_2, & x_3, & x_4, & x_5 & x_6 & \ge 0. \end{cases}$$

This system is solved with respect to x_4, x_5 , and x_6 , but the obtained basic solution is not feasible. So, we will look for a feasible solution by solving another linear program obtained as follows.

Multiply the last two equations by -1 in order to get positive RHS, then add to either of these equations its own variable and switch the LHS with the RHS:

$$\begin{cases}
4 = 2x_1 - x_2 + 2x_3 + x_4 \\
5 = -2x_1 + 3x_2 - x_3 - x_5 + y_1 \\
1 = x_1 - x_2 + 2x_3 - x_6 + y_2 \\
x_1, x_2, x_3, x_4, x_5, x_6, y_1, y_2 \ge 0.
\end{cases}$$

Note that a basic feasible solution of system (2) with $y_1 = y_2 = 0$ would be a basic feasible solution of (1). So, in search of such solutions, we will attempt to minimize $\xi = y_1 + y_2$ under conditions (2). A good feature is that we already have the following basic feasible solution of (2): $x_1 = x_2 = x_3 = x_5 = x_6 = 0$, $x_4 = 4$, $y_1 = 5$, $y_2 = 1$. Consider the tableau corresponding to our new linear program:

		y_0	x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2
$y_0 = -\xi$	0	1	0	0	0	0	0	0	-1	-1
x_4	4	0	2	-1	2	1	0	0	0	0
y_1	5	0	-2	3	-1	0	-1	0	1	0
y_2	1	0	1	-1	2	0	0	-1	0	1

We cannot yet start pivoting, since the coefficients at basic variables y_1 and y_2 in Row 0 are non-zeros. Excluding y_1 and y_2 from Row 0, we get

		y_0	x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2
$y_0 = -\xi$	6	1	-1	2	1	0	-1	-1	0	0
x_4	4	0	2	-1	2	1	0	0	0	0
y_1	5	0	-2	3	-1	0	-1	0	1	0
y_2	1	0	1	-1	2	0	0	-1	0	1

Choose Column x_3 as pivot column. Then the pivot row will be Row 3:

		y_0	x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2
$y_0 = -\xi$	11/2	1	3/2	5/2	0	0	1	1/2	0	1/2
x_4	3	0	1	0	0	1	0	1	0	-1
y_1	11/2	0	-3/2	5/2	0	0	-1	-1/2	1	1/2
x_3	1/2	0	1/2	-1/2	1	0	0	-1/2	0	1/2

Now we pivot on x_2 :

		y_0	x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2
$y_0 = -\xi$	0	1	0	0	0	0	0	0	-1	-1
x_4	3	0	1	0	0	1	0	1	1	-1
x_2	11/5	0	-3/5	1	0	0	-2/5	-1/5	2/5	1/5
x_3	16/10	0	2/10	0	1	0	-1/5	-6/10	1/5	6/10

Thus we found a basic feasible solution of (1) and return to this problem: Delete the columns corresponding to y_1 and y_2 , and replace the objective function.

		x_0	x_1	x_2	x_3	x_4	x_5	x_6
$x_0 = -z$	0	1	1	-1	1	0	0	0
x_4	3	0	1	0	0	1	0	1
x_2	11/5	0	-3/5	1	0	0	-2/5	-1/5
x_3	16/10	0	2/10	0	1	0	-1/5	-6/10

Excluding basic variables x_2 and x_3 from Row 0, we get

		x_0	x_1	x_2	x_3	x_4	x_5	x_6
$x_0 = -z$	3/5	1	1/5	0	0	0	-1/5	2/5
x_4	3	0	1	0	0	1	0	1
x_2	11/5	0	-3/5	1	0	0	-2/5	-1/5
x_3	16/10	0	2/10	0	1	0	-1/5	-6/10

Choose x_6 as the pivot column. Then the pivot row is Row 1. After the pivot we have

		x_0	x_1	x_2	x_3	x_4	x_5	x_6
$x_0 = -z$	-3/5	1	-1/5	0	0	-2/5	-1/5	0
x_6	3	0	1	0	0	1	0	1
x_2	14/5	0	-2/5	1	0	1/5	-2/5	0
x_3	17/5	0	4/5	0	1	3/5	-1/5	0

This tableau corresponds to the basic solution $x_5 = x_1 = x_4 = 0$, $x_2 = 14/5$, $x_3 = 17/5$, $x_6 = 3$, which gives -z = 3/5. Since we do not have negative entries in Row 0, this solution is optimal.