Second example of the simplex method Suppose we are given the problem Maximize $$z = x_1 - x_2 + x_3$$ (1) subject to $$\begin{cases} 2x_1 & -x_2 & +2x_3 & +x_4 & = 4\\ 2x_1 & -3x_2 & +x_3 & +x_5 & = -5\\ -x_1 & +x_2 & -2x_3 & +x_6 & = -1\\ x_1, & x_2, & x_3, & x_4, & x_5 & x_6 & \ge 0. \end{cases}$$ This system is solved with respect to x_4, x_5 , and x_6 , but the obtained basic solution is not feasible. So, we will look for a feasible solution by solving another linear program obtained as follows. Multiply the last two equations by -1 in order to get positive RHS, then add to either of these equations its own variable and switch the LHS with the RHS: $$\begin{cases} 4 = 2x_1 - x_2 + 2x_3 + x_4 \\ 5 = -2x_1 + 3x_2 - x_3 - x_5 + y_1 \\ 1 = x_1 - x_2 + 2x_3 - x_6 + y_2 \\ x_1, x_2, x_3, x_4, x_5, x_6, y_1, y_2 \ge 0. \end{cases}$$ Note that a basic feasible solution of system (2) with $y_1 = y_2 = 0$ would be a basic feasible solution of (1). So, in search of such solutions, we will attempt to minimize $\xi = y_1 + y_2$ under conditions (2). A good feature is that we already have the following basic feasible solution of (2): $x_1 = x_2 = x_3 = x_5 = x_6 = 0$, $x_4 = 4$, $y_1 = 5$, $y_2 = 1$. Consider the tableau corresponding to our new linear program: | | | y_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | y_1 | y_2 | |--------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------| | $y_0 = -\xi$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | | x_4 | 4 | 0 | 2 | -1 | 2 | 1 | 0 | 0 | 0 | 0 | | y_1 | 5 | 0 | -2 | 3 | -1 | 0 | -1 | 0 | 1 | 0 | | y_2 | 1 | 0 | 1 | -1 | 2 | 0 | 0 | -1 | 0 | 1 | We cannot yet start pivoting, since the coefficients at basic variables y_1 and y_2 in Row 0 are non-zeros. Excluding y_1 and y_2 from Row 0, we get | | | y_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | y_1 | y_2 | |--------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------| | $y_0 = -\xi$ | 6 | 1 | -1 | 2 | 1 | 0 | -1 | -1 | 0 | 0 | | x_4 | 4 | 0 | 2 | -1 | 2 | 1 | 0 | 0 | 0 | 0 | | y_1 | 5 | 0 | -2 | 3 | -1 | 0 | -1 | 0 | 1 | 0 | | y_2 | 1 | 0 | 1 | -1 | 2 | 0 | 0 | -1 | 0 | 1 | Choose Column x_3 as pivot column. Then the pivot row will be Row 3: | | | y_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | y_1 | y_2 | |--------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | $y_0 = -\xi$ | 11/2 | 1 | 3/2 | 5/2 | 0 | 0 | 1 | 1/2 | 0 | 1/2 | | x_4 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | -1 | | y_1 | 11/2 | 0 | -3/2 | 5/2 | 0 | 0 | -1 | -1/2 | 1 | 1/2 | | x_3 | 1/2 | 0 | 1/2 | -1/2 | 1 | 0 | 0 | -1/2 | 0 | 1/2 | Now we pivot on x_2 : | | | y_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | y_1 | y_2 | |--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | $y_0 = -\xi$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | | x_4 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | -1 | | x_2 | 11/5 | 0 | -3/5 | 1 | 0 | 0 | -2/5 | -1/5 | 2/5 | 1/5 | | x_3 | 16/10 | 0 | 2/10 | 0 | 1 | 0 | -1/5 | -6/10 | 1/5 | 6/10 | Thus we found a basic feasible solution of (1) and return to this problem: Delete the columns corresponding to y_1 and y_2 , and replace the objective function. | | | x_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | |------------|-------|-------|-------|-------|-------|-------|-------|-------| | $x_0 = -z$ | 0 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | | x_4 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | x_2 | 11/5 | 0 | -3/5 | 1 | 0 | 0 | -2/5 | -1/5 | | x_3 | 16/10 | 0 | 2/10 | 0 | 1 | 0 | -1/5 | -6/10 | Excluding basic variables x_2 and x_3 from Row 0, we get | | | x_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | |------------|-------|-------|-------|-------|-------|-------|-------|-------| | $x_0 = -z$ | 3/5 | 1 | 1/5 | 0 | 0 | 0 | -1/5 | 2/5 | | x_4 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | x_2 | 11/5 | 0 | -3/5 | 1 | 0 | 0 | -2/5 | -1/5 | | x_3 | 16/10 | 0 | 2/10 | 0 | 1 | 0 | -1/5 | -6/10 | Choose x_6 as the pivot column. Then the pivot row is Row 1. After the pivot we have | | | x_0 | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | |------------|------|-------|-------|-------|-------|-------|-------|-------| | $x_0 = -z$ | -3/5 | 1 | -1/5 | 0 | 0 | -2/5 | -1/5 | 0 | | x_6 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | x_2 | 14/5 | 0 | -2/5 | 1 | 0 | 1/5 | -2/5 | 0 | | x_3 | 17/5 | 0 | 4/5 | 0 | 1 | 3/5 | -1/5 | 0 | This tableau corresponds to the basic solution $x_5 = x_1 = x_4 = 0$, $x_2 = 14/5$, $x_3 = 17/5$, $x_6 = 3$, which gives -z = 3/5. Since we do not have negative entries in Row 0, this solution is optimal.