Two phase simplex

► Suppose we are given the problem

$$\mathsf{Minimize}\ z = -x_1 + x_2 - x_3$$

subject to

- ▶ This system is solved with respect to x_4 , x_5 , and x_6 , but the obtained basic solution is not feasible. So, we will look for a feasible solution by solving another linear program obtained as follows.
- ▶ Multiply the last two equations by -1 in order to get positive RHS, then add to either of these equations its own variable and switch the LHS with the RHS:

$$4 = 2x_1 - x_2 + 2x_3 + x_4
5 = -2x_1 + 3x_2 - x_3 - x_5 + y_1
1 = x_1 - x_2 + 2x_3 - x_6 + y_2
x_1, x_2, x_3, x_4, x_5, x_6, y_1, y_2 \ge 0.$$
(2)

- Note that a basic feasible solution of system (2) with $y_1 = y_2 = 0$ would be a basic feasible solution of (1).
- So, in search of such solutions, we will attempt to minimize $\xi = y_1 + y_2$ under conditions (2).
- We have added y_1 and y_2 so that we have the following basic feasible solution of (2): $x_1 = x_2 = x_3 = x_5 = x_6 = 0$, $x_4 = 4$, $y_1 = 5$, $y_2 = 1$.
- ▶ We could also add a variable for the first row, but we don't have to since it is already solved for x₄.
- ► Consider the tableau corresponding to our new linear program:

		x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>y</i> ₁	У2
$-\xi$	0	0	0	0	0	0	0	1	1
<i>X</i> ₄	4	2	-1	2	1	0	0	0	0
<i>y</i> ₁	5	-2	3	-1	0	-1	0	1	0
<i>y</i> 2	1	1	-1	2	0	0	-1	0	1

We cannot yet start pivoting, since the coefficients at basic variables y_1 and y_2 in Row 0 are non-zeros. Excluding y_1 and y_2 from Row 0, we get...

		x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>y</i> ₁	<i>y</i> ₂
$-\xi$	-6	1	-2	-1	0	1	1	0	0
<i>X</i> ₄	4	2	-1	2	1	0	0	0	0
y_1	5	-2	3	-1	0	-1	0	1	0
<i>y</i> 2	1	1	-1	2	0	0	-1	0	1

Choose Column x_3 as the pivot column. Then the pivot row will be Row 3:

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	У1	<i>y</i> ₂
$-\xi$	-11/2	3/2	-5/2	0	0	1	1/2	0	1/2
<i>X</i> 4	3	1	0	0	1	0	1	0	-1
y_1	11/2	-3/2	5/2	0	0	-1	-1/2	1	1/2
<i>X</i> 3	1/2	1/2	-1/2	1	0	0	-1/2	0	1/2

Now we pivot on column x_2 and Row 2:

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>y</i> ₁	У2
$-\xi$	0	0	0	0	0	0	0	1	1
<i>X</i> ₄	3	1	0	0	1	0	1	1	-1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5	2/5	1/5
<i>X</i> 3	16/10	2/10	0	1	0	-1/5	-6/10	1/5	6/10

- ▶ This is an optimal tableau for the auxiliary problem
- ▶ If the value of the objective function at the optimum was greater than 0, then ...
- we can could conclude that the original problem was infeasible.
- ▶ But it is 0, so we have found a bfs of the original problem
- ▶ Delete the columns corresponding to y_1 and y_2 , and replace the original objective function.
- ▶ One special case that could happen:
 - ▶ If the optimum to the auxiliary problem is degenerate, an artifical variable, y₁ or y₂, could still be in the basis.
 - ▶ To drive the artifical variables out of the the basis if row i is solved for, say y_1 (so y_1 is still in the basis), then pivot on entry (i,j) for any of the original columns j such that $a_{i,j} \neq 0$ (even if $\overline{c}_j > 0$ or $a_{i,j} < 0$).
 - Repeat until no artifical variables remain in the basis. (See page 56 of the book).

► Here is the new tableau - the top row corresponds exactly to the original objective function

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
-z	0	-1	1	-1	0	0	0
<i>X</i> ₄	3	1	0	0	1	0	1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5
<i>X</i> 3	16/10	2/10	0	1	0	-1/5	-6/10

ightharpoonup Excluding basic variables x_2 and x_3 from Row 0, we get

		<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆
-z	-3/5	-1/5	0	0	0	1/5	-2/5
<i>X</i> ₄	3	1	0	0	1	0	1
<i>x</i> ₂	11/5	-3/5	1	0	0	-2/5	-1/5
<i>X</i> 3	16/10	2/10	0	1	0	-1/5	-6/10

► Choose x_6 as the pivot column. Then the pivot row is Row 1. After the pivot we have

		x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
-z	3/5	1/5	0	0	2/5	1/5	0
<i>x</i> ₆	3	1	0	0	1	0	1
<i>x</i> ₂	14/5	-2/5	1	0	1/5	-2/5	0
<i>x</i> ₃	17/5	4/5	0	1	3/5	-1/5	0

This tableau corresponds to the basic solution $x_5 = x_1 = x_4 = 0$, $x_2 = 14/5$, $x_3 = 17/5$, $x_6 = 3$, which gives -z = 3/5. Since we do not have negative entries in Row 0, this solution is optimal.