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Math 482 - Fall 2015 - Theodore Molla

1. Basic feasible solutions and the simplex method

1.1. Basic feasible solutions. Recall that a matrix A ∈ Rm×n has rank r, if A if exactly r linearly
independent rows and r linearly independent columns.

Assumption 1 (Initial assumptions). Unless otherwise mentioned whenever we say:

min cTx subject to Ax = b,x ≥ 0,

We mean that A ∈ Rm×n, b ∈ Rm and c ∈ Rn.
We also will assume that Ax = b has at least one solution and that and that A ∈ Rm×n has rank m.

Note that this implies that n ≥ m (In equational form, the matrix A is always at least as wide as it is tall.)

Why can we make these assumption? Also recall that it is “easy” (via Gaussian Elimination) to check
if Ax = b has a solution. This handles the first assumption. The following proposition justifies the second
assumption.

Proposition 1. Suppose A ∈ Rm×n, b ∈ Rm and that there exists a solution to the equation Ax = b. If A
does not have rank m, then there exists i0 ∈ [m], such that when

• A′ is obtained from A by removing row i0,
• b′ is obtained from b by removing the i0th entry of b,

F := {x : Ax = b,x ≥ 0} is equal to F ′ := {x : A′x = b′,x ≥ 0}.

Proof. We clearly have that every x ∈ F is also F ′. This is because Ax = b implies that for every
i ∈ [m] \ {i0}, aT

i x = bi, which is equivalent to the expression A′x = b′.
Since A does not have rank m, there exists y ∈ Rm \ {0} such that yTA = 0T . Since y 6= 0, we can

assume without loss of generality that that ym 6= 0. So we have that

ymaT
m = −

m−1∑
i=1

yia
T
i .

and, since there exists x ∈ Rn such that Ax = b, we have that

ymbm = ymaT
mx = −

m−1∑
i=1

yia
T
i x = −

m−1∑
i=1

yibi.

Now let x′ ∈ F ′. Recall that we will complete the proof if we show that x′ ∈ F . Therefore, the only thing
we need to show is that

aT
mx = bm,

and this follows from the following expression and the fact that ym 6= 0:

ymaT
mx = −

m−1∑
i=1

yia
T
i x = −

m−1∑
i=1

yibi = ymbm.

�

Definition 1 (Basic Feasible Solution (bfs)). Let

min cTx subject to Ax = b,x ≥ 0,

and let
F := {x : Ax = b; x ≥ 0}.

Recall that we assume that A has rank m. An index set B ⊆ [n] is a basis if |B| = m and AB is non-singular
(a non-singular matrix, is an invertible matrix, or a matrix with non-zero determinant, etc.) A basis B is a
feasible basis if |B| = m and A−1B b ≥ 0. A feasible solution x is a basic feasible solution (bfs), if there exists

a basis B such that xj = 0 for every j ∈ B (Here B := {j ∈ [j] : j /∈ B}). However, it is NOT necessarily
true that if x is a bfs, then xj > 0 for every j ∈ B. We use these term in reference to an LP and also to the
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set of feasible solutions F , i.e. we may say that x is a basic feasible solution of F or a basic feasible solution
of the LP.

Proposition 2. A feasible basis B corresponds to exactly one basic feasible solution. This basic feasible
solution x is defined by xB = A−1B b and xB = 0. In particular, if x′ is feasible and x′ 6= x, then there exists

j ∈ B such that x′j > 0.

Proof. Suppose x is a basic feasible solution corresponding to B. By definition, it must be that xB = 0,

and this implies that b = Ax = ABxB , so xB = A−1B b. The fact that xB = 0 uniquely determined x, so if
x′ 6= x, we must have x′B 6= 0. �

Lemma 3 ([2] Theorem 2.2). If x is a bfs of

F := {x : Ax = b; x ≥ 0}
with associated basis B, then there exists c such that x is the unique optimal solution of

min cTx subject to Ax = b,x ≥ 0.

Proof. Define c by cB = 0 and cj = 1 for all j ∈ B. By the definition of a bfs, cTx = 0. Now let x′ be

a feasible vector such that x′ 6= x. By Proposition 2 there exist j ∈ B such that x′j > 0, so since x′ ≥ 0,

cTx′ ≥ cjx′j = x′j > cTx. �

Proposition 4 ([1] Theorem 2.1). A feasible solution x to the linear program

min cTx subject to Ax = b,x ≥ 0,

is a bfs if and only if the columns of the matrix AK are linearly independent where

K := {j ∈ [n] : xj > 0}.

Proof. If x is a bfs, then there exists a basis B ⊆ [n], such that K ⊆ B. The fact that AB is linearly
independent implies that AK is linearly independent.

To prove the other direction, assume AK is linearly independent. Pick B ⊆ [n] as large as possible such
that:

• K ⊆ B ⊆ [n],
• the columns of AB are linearly independent, and
• xj = 0 for all j ∈ [n] \B.

Clearly, |B| ≤ m, since AB is linearly independent. If |B| < m, then since A has rank m, it must be that
there exists j ∈ [n] \ B such that the columns of AB∪{j} are linearly independent, but this contradicts our
selection of B (B ∪ {j} also satisfies the three conditions we placed on B, but has more element than B).
Therefore, it must be that |B| = m, and this implies that x is a bfs. �

Lemma 5 (Theorem 2.1 in [2]). Consider the linear program

min cTx subject to Ax = b,x ≥ 0.

(1) If there is a feasible solution, then there is a basic feasible solution.
(2) If the linear program is bounded and there is a feasible solution x, then there exists a basic feasible

solution x0 such that cTx0 ≤ cTx.

Proof. Let x be a feasible solution. Assume that x is not a basic feasible solution as other was there is
nothing to prove for both parts (1) and (2). Let

F ′ := {x′ : x′ is a feasible solution and x′j = 0 for all j ∈ [n] such that xj = 0}.

First we will prove (1). Let x be an element of F ′ with the most zero entries 1. Suppose x is not a bfs let
K := {j ∈ [n] : xj > 0}. By Proposition 4, the columns of AK are not linearly independent, so there exists
w ∈ Rn \ {0} such that wK = 0 and AKwK = 0. By construction we have that Aw = 0, i.e. w is in he
null space of A, so for every θ > 0, if we define x∗ = x + θw, then

Ax∗ := Ax + θAx = b.

1There can be more than one such x
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We can assume that there exist j ∈ K such that wj < 0, because otherwise we could have selected −w
instead of w. Since wK = 0, we can pick θ so that x∗ ∈ F ′ and x∗j = 0 for some j ∈ K a contradiction to
our choice of x. This proves (1).

For (2) we essentially do the same proof, except instead of picking x to be an element of F ′ with the most
zero entries, we pick x to be an element of F ′ such that cTx ≤ cTx and, subject to this additional condition,
has the most zero entries. We construct w in exactly the same way except we can assume that, since the
LP is bounded, that cTw ≤ 0 and there exists j ∈ [n] such that wj < 0. If cTw = 0, then we can make this
assumption since w 6= 0 and either w or −w will work. If cTw < 0 and w ≥ 0, then the LP is unbounded,
because for every θ > 0, x∗ = x + θw is feasible and as θ goes to infinity cTx∗ goes to −∞. So define

Ax∗ := Ax + θAx = b

again and note that for any θ > 0,

cTx∗ = cTx + θcTw ≤ cTx.

Therefore, we can select θ so that x∗ violates our choice of x. �

Theorem 6 (Fundamental Theorem).

(1) If the LP has a feasible solution, then the LP has a basic feasible solution.
(2) If the LP has no optimal solution, then the LP is infeasible or unbounded.
(3) If the LP has an optimal solution, then it has an optimal basic feasible solution

Proof. The first statement follows directly from the first statment in Lemma 5 and third statement follows
directly from the second statement in Lemma 5. To prove the second statement we use the contrapositive,
i.e. we assume that the LP is not infeasible and and not unbounded, and then deduce that the LP has an
optimal solution.

By Lemma 5 and the fact that we are assume that the LP is not infeasible, there exists basic feasible
solutions. Since there are at most a finite number of basic feasible solutions, we can select x∗ so that for
every basic feasilble solution x′, cTx∗ ≤ cTx′.

Now let x be any feasible solution. By Lemma 5, there exists a bfs x′ such that x′ ≤ x. By our selection
of x∗, we have that

cTx∗ ≤ cTx′ ≤ cTx.

Since x was an arbitrary feasible solution, we have proved that x∗ is an optimal basic feasible solution. �

1.2. Lemmas related to the simplex method. If at a step of the simplex method the basis is B, the
vector cT := cT − cTBA−1B A is in columns 1 through n of the top row of the tableau. The entry cj is referred
to as the relative cost of column j. The following theorem proves the significance of this vector.

Proposition 7. Let x is a bfs with associated basis B and define cT := cT − cTBA−1B A, then cTx′ =

cTx + cTx′ for any feasible solution x′. In particular, we have that x is an optimal solution if cT ≥ 0.

Proof. Let x′ be a feasible solution. In particular, we have that Ax′ = b. Also, note that by Proposition 2,
cTx = cTBxB = cTBA−1B b. This with the definition of c and linearity gives the following:

cTx + cTx′ = cTx + cTx′ − cTBA−1B Ax′

= cTx + cTx′ − cTBA−1B b

= cTx + cTx′ − cTx

= cTx′.

When cT ≥ 0, x is an optimum, because cTx′ = cTx + cTx′ ≥ cTx, since x′ ≥ 0. �

In the simplex procedure there are two row operations: either we multiple some row i ∈ {1, . . . , n} by α,
or we add some multiple of a row i ∈ {1, . . . , n} to a row j ∈ {0, . . . , n}. The first operation corresponds to
pre-multiplication of T by I(i, α) which is obtained from the identity matrix I by replacing 1 in the entry (i, i)
with α, and the second operation corresponds to pre-multiplication of T by I(i, j, α) which is obtained from

the identity matrix I by replacing 0 in the entry (i, j) with α. This means that T̃ is obtained from T by a
sequence of pre-multiplications by such matrices. Note that in all cases the matrix we pre-multiply by has the
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first column [1, 0, 0, . . . , 0]T , i.e. we never add a multiple of row 0 to row i where i ∈ {1, . . . , n} and we never
multiply row 0 by a constant. Therefore, the product of these matrices has first column [1, 0, 0, . . . , 0]T since
the product of two matrices with the zero column [1, 0, 0, . . . , 0]T also has the zero column [1, 0, 0, . . . , 0]T .

Assume the current ordered basis is B = (j1, . . . , jm), the original matrix is A and the original cost vector
is c. We know that, in the current tableau, row i is solved for variable xji , so in column ji, we should have
a 0 in the top row and in rows 1 through m we should have the ith standard basis vector. In other words,
the columns j1 through jm in order of the current tableau have the form 0T

Im

 ,
where Im is the m × m identity matrix. Therefore, if X is the matrix we must pre-multiply the original
tableau, T, by in order to the get the current tableau,

XTB = X

[
cTB
AB

]
=

 0T

Im

 .
Hence, the following theorem gives X and the current tableau in terms of A, B and c

Theorem 8. Let

T =

 f cT

b A


be a tableau, and let B = (j1, . . . , jm) be an ordered basis. Let X be a non-singular matrix with first column
[1, 0, . . . , 0]T . If

X

[
cTB
AB

]
=

 0T

Im

 ,
then X =

 1 −πT

0 A−1B

 , where πT = cTBA−1B . In particular,

XT =

 f − πTb cT

A−1B b A−1B A

 .
where cT = cT − πTA.

Proof. Let X =

[
1 uT

0 U

]
so X

[
cB
AB

]
=

 0T

I

 gives the equations cTB + uTAB = 0T and UAB = I.

We then get uT = −cTBA−1B and U = A−1B , by solving the matrix equations. This proves the first part. The
“In particular” statement, follows from block multiplication of matrices. �

The following theorem is essentially a proof that each step of the simplex method does what we want
to to do. It also implies that if the LP has no degenerate basic feasible solutions that the simplex method
terminates, because each LP only has a finite number of basic feasible solutions.

Theorem 9. Let x be a bfs with associated basis B and jin ∈ B, and define w ∈ Rn by wjin = 1,

wB = −A−1B Ajin , and wj = 0 for all j /∈ B ∪ {jin}. Furthermore, if w has a negative entry, then let

θ0 = min
j∈B
wj<0

xj
−wj

,

Jmin = {j ∈ B : wj < 0 and
xj

−wj
= θ0} and x∗ = x + θ0w. The following statements are true:

(1) w is in the nullspace of A, (so A(x + θw) = b for any θ ∈ R) and cTw = cj.
(2) If cj < 0 and w ≥ 0, then the LP is unbounded.
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(3) If w has a negative entry, then x∗j = 0 for all j ∈ Jmin, cTx∗ = cTx + θ0cj, and x∗ is a bfs with
associated basis B′ = B \ {jout} ∪ {jin} for any jout ∈ Jmin. In particular, if x is not degenerate,
then cTx∗ < cTx; and if x∗ is not degenerate, then |Jmin| = 1.

Proof. We have that
Aw = Aj + ABwB = Aj + AB(−A−1B Aj) = 0

and
cTw = cj + cTBwB = cj + cTB(−A−1B Aj) = cj − cTBA−1B Aj = cj ,

so (1) is true. Therefore, if w ≥ 0, then x + θw is feasible for any θ ≥ 0, so when cj < 0, we have that

cT (x + θw) = cTx + θcj → −∞
as θ goes to infinity, so (2) is true

Now assume w has a negative entry. Let j ∈ [n]. If wj ≥ 0, then clearly x∗j = xj +θ0wj ≥ 0 and if wj < 0,
then

x∗j = xj + θ0wj ≥ xj +
xj
−wj

wj = 0.

with equality holding if and only if j ∈ Jmin. Clearly cTx∗ = cTx + θ0c
Tw = cTx + θ0cj .

Let jout ∈ Jmin and B′ = B \ {jout} ∪ {jin}. If j /∈ B′, then j /∈ B or j = jout and in either case
x∗j = 0. The only thing left to show is that B′ is a basis. Let dj be constants for each j ∈ B′ and assume
that

∑
j∈B′ djAj = 0. We will prove that dj = 0 for all j ∈ B′, which will show that the columns of

A′B are linearly independent, i.e. A′B is nonsingular, which will imply that B′ is a basis. Recall that
Ajin = −ABwB =

∑
j∈B −wjAJ , hence

0 =
∑
j∈B′

djAj = djinAjin +
∑

j∈B\{jout}

djAj = djin

∑
j∈B
−wjAj

+
∑

j∈B\{jout}

djAj

= −djinwjout
Ajout

+
∑

j∈B\{jout}

(−djinwj + dj)Aj ,

so since the columns of AB are linearly independent, −djinwjout
= 0 and −djinwj + dj = 0 for every

j ∈ B \ {jout}. Recall that jout ∈ Jmin which implies that wjout < 0. Therefore, djin = 0. This further
implies that dj = 0 for all j ∈ B \ {jout}. Hence, we have shown that dj = 0 for all j ∈ B′. �
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