Suppose we are given the problem **P**:

Minimize $z = x_1 + 3x_2 + 3x_3 + x_4$

subject to

$$\begin{cases} 3x_1 + 4x_2 - 3x_3 + x_4 &= 2, \\ 3x_1 - 2x_2 + 6x_3 - x_4 &= 1, \\ 6x_1 + 4x_2 &+ x_4 &= 4 \\ x_1, x_2, x_3, x_4 \geq 0. \end{cases}$$
(1)

The dual to ${\bf P}$ is the following ${\bf D}$

Maximize $w = 2\pi_1 + \pi_2 + 4\pi_3$

subject to

- $\begin{cases}
 3\pi_1 + 3\pi_2 + 6\pi_3 \leq 1, \\
 4\pi_1 2\pi_2 + 4\pi_3 \leq 3, \\
 -3\pi_1 + 6\pi_2 \leq 3, \\
 \pi_1 \pi_2 + \pi_3 \leq 1.
 \end{cases}$ (2)
- Someone tells us that the vector $\pi = (1/3, 0, 0)^T$ is an optimal vector for **D**.
- Note that the value of w with this π is 2/3.
- We compute that π is feasible and J, the indices of the *admissible* columns, is $\{1\}$.
- Complementary slackness implies that if π is optimal for **D**, then there exists a solution to **P** such that the only non-zero entry is x_1 .
- ► We try to find it by solving the following *restricted primal problem* **RP1** using revised simplex.

Minimize $\xi = x_1^r + x_2^r + x_3^r$

subject to

ſ	3 <i>x</i> 1	$+x_1^r$			=	2,
	3 <i>x</i> ₁		$+x_{2}^{r}$		=	1,
	6 <i>x</i> 1			$+x_{3}^{r}$	=	4,
l	$x_1,$	x_1^r ,	x_2^r ,	x_3^r	\geq	0.

- ► Note that the cost vector we will use is for the restricted primal problem, i.e. columns x₁^r, x₂^r, and x₃^r all have cost 1 and x₁, x₂, x₃ and x₄ have cost 0.
- ▶ Note that we use the label π^r instead of π when solving **RP**.
- We start with x_1^r, x_2^r , and x_3^r in the basis, so $(\pi^r)^T = c_B^T A_B^{-1} = [1, 1, 1]$ and $(\pi^r)^T b = 7$, and the initial CARRY matrix is:

$-\xi$	-7	-1	-1	-1
x_1^r	2	1	0	0
x_2^r	1	0	1	0
x ₃ ^r	4	0	0	1

- ► There is only one column we can bring into the basis, the column associated with x_1 . The relative cost of this column is $0 (\pi^r)^T A_1 = -12$,
- So we bring x₁ into the basis, we compute that A⁻¹_BA₁ = [3,3,6]^T, so we append [-12,3,3,6]^T to the tableau and pivot on the second row.

We get the following CARRY, and we are done since x_2^r just left the basis, so it has non-negative relative cost, and we cannot pivot on the x_2, x_3 or x_4 columns since they are not admissible. x_1^r 0 1 1/3 0 x_1 2 0 -2 1 x_3^r Since the optimal value of **RP** is $\xi = 3$, we know that $\pi = (1/3, 0, 0)^T$ is NOT optimal for **D**. • But we can use π^r to improve π . Our new π^* will have the form $\pi^* = \pi + \theta \pi^r.$ (3)• Here θ is a positive factor that we will find and π^r is an optimal vector in the dual DRP1 to RP1 which (by definition) is as follows: Maximize $w^{r} = 2\pi_{1}^{r} + \pi_{2}^{r} + 4\pi_{3}^{r}$ $3\pi_1^r + 3\pi_2^r + 6\pi_3^r \leq 0, \ \pi_1^r \leq 1, \ \pi_2^r \leq 1, \ \pi_3^r \leq 1.$ subject to • We have $(\pi^r)^T = [1, -3, 1]$ from the last carry matrix. • Now we choose θ as large as possible so that the vector $(\pi^*)^T = (1/3, 0, 0) + \theta(1, -3, 1)$ is feasible in **D**, i.e. we need $\pi^T A_j + \theta(\pi^r)^T A_j \leq c_j$ for every $j \in [n]$. • We know that since π is feasible for **D** and π^r is feasible for **DRP**, $\pi^T A_j \leq c_j$ for every $j \in [n]$ and $(\pi^r)^T A_j \leq 0$, for every $j \in J$, so π^* will satisfy the first inequality in **D** for any $\theta > 0$. • We must also compute $(\pi^r)^T A_2 = 14$, $(\pi^r)^T A_3 = -21$, and $(\pi^r)^T A_4 = 5$, so • $\theta = \min\{(c_2 - \pi^T A_2)/14, (c_4 - \pi^T A_4)/5\} = \min\{(5/3)/14, (2/3)/5\} = 5/42,$ In general, $\theta = \min_{\substack{j \notin J, \\ (\pi^r)^T A_j > 0}} \left\{ \frac{c_j - \pi^T A_j}{(\pi^r)^T A_j} \right\}$ We have that $(\pi^*)^T = \pi^T + \theta(\pi^r)^T = (1/3, 0, 0)^T + \frac{5}{42}(1, -3, 1)^T = (\frac{19}{42}, \frac{-5}{14}, \frac{5}{42})^T$ and we set $\pi = \pi^*$ • Note that now $w = \pi^T b = 2\frac{19}{42} - \frac{5}{14} + 4\frac{5}{42} = \frac{43}{42}$. • We now continue revised simplex, but now we recompute $J = \{1, 2\}$ (we know 1 must be in J because it was in the basis at the end of the last iteration). Recall our last carry matrix was -È _1 -1 1 0 x_1^r 1 0 1/3 1/30 x_1 0 -2 2 1 x_3^r • We also know the relative cost of the x_2 column is $0 - (\pi^r)^T A_2 = -14$, so we pivot on the x_2 column. • We compute that $A_B^{-1}A_2 = [6, -2/3, 8]^T$, so we append $[-14, 6, -2/3, 8]^T$ to the CARRY matrix and pivot on the first row to obtain. -2/34/3 2/3 | -1 $\frac{1/3}{1/6}$ $\frac{1/9}{-4/3}$ 0 1/6 4/9 *x*₂ 0 x_1 2/3 -2/31 x_3^r • We compute that the relative cost of the x_2^r column is $(1 - (\pi^r)^T \mathbf{e_2} = 1 + 2/3 = 5/3 \ge 0$, so we are done (x_1^r) just left the basis and the x_3 and x_4 columns are not admissible).

From the carry matrix $(\pi^r)^T = [-4/3, -2/3, 1]$, and we must compute θ .								
For $J \in J = \{3, 4\}$, we compute $(\pi^{*})^{*} A_{j}$, and we have that $(\pi^{*})^{*} A_{3} = 4 - 4 = 0$, and $(\pi^{*})^{*} A_{4} = -4/3 + 2/3 + 1 = 1/3$.								
• Hence $\theta = \min\{(c_4 - \pi^T A_4)/(1/3)\} = \min\{(1 - 13/14)/(1/3)\} = 3/14$								
We compute $(\pi^{-})^{+} = \pi^{+} + 3/14(\pi^{-})^{+} = \lfloor \frac{2}{6}, \frac{\pi^{-}}{2}, \frac{3}{3} \rfloor$ and set $\pi^{+} = (\pi^{+})^{+}$. We compute $J = \{1, 2, 4\}$ (we know 1 and 2 must be in J since x_1 and x_2								
were in the basis at the end of the last iteration)								
Rec	an that our	$-\xi -2$	3 4/3	2/3 -	-1			
		$x_2 1/$	$\begin{array}{c c} 6 & 1/6 \\ 0 & 1/0 \end{array}$	-1/6	0			
		$x_1 + 7 = 4/2$ $x_3^r = 2/2$	$\frac{3}{3}$ $-4/3$	-2/3	1			
The	e relative co	st of x_4 is $0 - (x_4)^{-1}$	$(\pi^r)^T = -1/$	3 < 0, so	we pivot on co	olumn 4		
A _B CA	$A_4 = [1/3, RRY matrix]$	-1/9, $1/3$], so and pivot on ro	we append w 1, to obt	[-1/3,1/ ain	3, -1/9, 1/3]	to the		
		$-\xi$ -1	$\frac{2}{3/2}$	1/2 -	-1			
		$\begin{array}{c c} x_4 & 1/\\ x_1 & 1/ \end{array}$	$\frac{2}{2}$ $\frac{1/2}{1/6}$	$\frac{-1/2}{1/6}$	0			
		$x_3^r \boxed{1/}$	2 - 3/2	-1/2	<u>1</u> 2/2 Г/2 г			
x ₂ J rela	ust left the tive cost of	basis and the re x_2^r is $1 + 1/2 =$	= 3/4, so we	of x ₁ is I ⊣ are done.	-3/2 = 5/2 a And π^T is no	nd the t optimal		
bec	ause $\xi=1/$	2 > 0.	,			·		
-	.1	r : (r)T	[2/2 1	/0.11				
Fro	$i \in \overline{J} = \{3\}$	matrix $(\pi^{*})^{*} =$ }. we compute ($(\pi^{r})^{T}A_{i}$ and	/2,1], and	we must com that $(\pi^r)^T A_3$	= 3/2.		
Her	nce $\theta = \min$	$\{(c_3 - \pi^T A_3)/($	3/2) = min	n{(3 - (-7	7/2))/(3/2)}	= 13/3		
We	compute (7	$(\pi^*)^T = \pi^T + 13$	$/3(\pi^r)^T = $	$\left[-\frac{19}{3}, \frac{-8}{3}, \frac{1}{3}\right]$	$\left[\frac{4}{3}\right]$ and set π^7	$=(\pi^*)^T$,	
Rec	$J = \{1, 3, 4\}$ sall that our	+} last CARRY ma	atrix was					
		$-\xi$ -1	$\frac{2}{2}$ $\frac{3}{2}$	1/2 -	-1			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2}{2}$ $\frac{1/2}{1/6}$	$\frac{-1/2}{1/6}$	0			
		$x_3^r 1/$	2 - 3/2	-1/2	1			
I he	e relative co	st x_3 is $0 - (\pi')$	$A_3 = -3/$ 1/2 3/21 ^T	2, so we p	ivot on colum	n 3		
[-3	3/2, -9/2, 1	$[2,3/2]^T$ to the	CARRY ma	atrix and p	ivot on row 3	, to obtair	ı	
		$\begin{array}{c c} x_4 & 2 \\ x_1 & 1/3 \end{array}$	3 2/3	$\frac{-2}{1/3}$ $-1/$	/3			
<u> </u>	ć o	$x_3 \ 1/3$	3 -1 -	$\frac{1/3}{14}$ 2/	/3	I .		
in I	ce $\xi = 0$, we D and the co	e know the vecto orresponding op	or (— 13 , 3 timal vector	$(\frac{1}{3})'$ indefinition in \mathbf{P} is (1)	ed is an optim $(3, 0, 1/3, 2)^T$	nal vector . The		
opt	imal cost is	10/3.		, , , , , , , , , , , , , , , , , , ,				
	The followir	ng table summai	ries the proc	ess.				
		0						
	Iteration	π^T	$w = \pi^T b$	J	$(\pi^r)^T$	$(\pi^r)^T b$	θ	
	1	[1/3,0,0]	$\frac{2}{3}$	{1}	[1, -3, 1]	3	<u>5</u> 42	
	2	$[\tfrac{19}{42}, \tfrac{-5}{14}, \tfrac{5}{42}]$	<u>43</u> 42	$\{1,2\}$	$\left[-rac{4}{3},-rac{2}{3},1 ight]$	$\frac{2}{3}$	$\frac{3}{14}$	
	3	$[\tfrac16,-\tfrac12,\tfrac13]$	$\frac{7}{6}$	$\{1,2,4\}$	$\left[-\tfrac{3}{2},-\tfrac{1}{2},1\right]$	$\frac{1}{2}$	$\frac{13}{3}$	
	4	$\left[-\frac{19}{3},-\frac{8}{3},\frac{14}{3}\right]$	$\frac{10}{3}$	$\{1,3,4\}$	[0, 0, 0]	0	N/A	