
Suppose we are given the problem P:

Minimize z = x1 + 3x2 + 3x3 + x4

subject to 



3x1 +4x2 −3x3 +x4 = 2,
3x1 −2x2 +6x3 −x4 = 1,
6x1 +4x2 +x4 = 4
x1, x2, x3, x4 ≥ 0.

(1)

The dual to P is the following D

Maximize w = 2π1 + π2 + 4π3

subject to 



3π1 +3π2 +6π3 ≤ 1,
4π1 −2π2 +4π3 ≤ 3,
−3π1 +6π2 ≤ 3,
π1 −π2 +π3 ≤ 1.

(2)

I Someone tells us that the vector π = (1/3, 0, 0)T is an optimal vector for D.

I Note that the value of w with this π is 2/3.

I We compute that π is feasible and J, the indices of the admissible columns,
is {1}.

I Complementary slackness implies that if π is optimal for D, then there exists
a solution to P such that the only non-zero entry is x1.

I We try to find it by solving the following restricted primal problem RP1
using revised simplex.

Minimize ξ = x r1 + x r2 + x r3

subject to 



3x1 +x r1 = 2,
3x1 +x r2 = 1,
6x1 +x r3 = 4,
x1, x r1 , x r2 , x r3 ≥ 0.

I Note that the cost vector we will use is for the restricted primal problem, i.e.
columns x r1 , x r2 , and x r3 all have cost 1 and x1, x2, x3 and x4 have cost 0.

I Note that we use the label πr instead of π when solving RP.

I We start with x r1 , x
r
2 , and x r3 in the basis, so (πr )T = cTB A−1B = [1, 1, 1] and

(πr )Tb = 7, and the initial CARRY matrix is:

−ξ −7 −1 −1 −1
x r1 2 1 0 0
x r2 1 0 1 0
x r3 4 0 0 1

I There is only one column we can bring into the basis, the column associated
with x1. The relative cost of this column is 0− (πr )TA1 = −12,

I so we bring x1 into the basis, we compute that A−1B A1 = [3, 3, 6]T , so we
append [−12, 3, 3, 6]T to the tableau and pivot on the second row.



I We get the following CARRY, and we are done since x r2 just left the basis, so
it has non-negative relative cost, and we cannot pivot on the x2, x3 or x4
columns since they are not admissible.

−ξ −3 −1 3 −1
x r1 1 1 −1 0
x1 1/3 0 1/3 0
x r3 2 0 −2 1

I Since the optimal value of RP is ξ = 3, we know that π = (1/3, 0, 0)T is
NOT optimal for D.

I But we can use πr to improve π. Our new π∗ will have the form

π∗ = π + θπr . (3)

I Here θ is a positive factor that we will find and πr is an optimal vector in the
dual DRP1 to RP1 which (by definition) is as follows:

Maximize w r = 2πr
1 + πr

2 + 4πr
3

subject to




3πr
1 +3πr

2 +6πr
3 ≤ 0,

πr
1 ≤ 1,

πr
2 ≤ 1,

πr
3 ≤ 1.

I We have (πr )T = [1,−3, 1] from the last carry matrix.

I Now we choose θ as large as possible so that the vector
(π∗)T = (1/3, 0, 0) + θ(1,−3, 1) is feasible in D, i.e. we need
πTAj + θ(πr )TAj ≤ cj for every j ∈ [n].

I We know that since π is feasible for D and πr is feasible for DRP,
πTAj ≤ cj for every j ∈ [n] and (πr )TAj ≤ 0, for every j ∈ J, so π∗ will
satisfy the first inequality in D for any θ > 0.

I We must also compute (πr )TA2 = 14, (πr )TA3 = −21, and (πr )TA4 = 5, so

I θ = min{(c2−πTA2)/14, (c4−πTA4)/5} = min{(5/3)/14, (2/3)/5} = 5/42,

I In general,

θ = min
j /∈J,

(πr )TAj>0

{
cj − πTAj

(πr )TAj

}

I We have that
(π∗)T = πT + θ(πr)T = (1/3, 0, 0)T + 5

42 (1,−3, 1)T = ( 19
42 ,
−5
14 ,

5
42 )T and we

set π = π∗

I Note that now w = πTb = 2 19
42 − 5

14 + 4 5
42 = 43

42 .

I We now continue revised simplex, but now we recompute J = {1, 2} (we
know 1 must be in J because it was in the basis at the end of the last
iteration).

I Recall our last carry matrix was

−ξ −3 −1 3 −1
x r1 1 1 −1 0
x1 1/3 0 1/3 0
x r3 2 0 −2 1

I We also know the relative cost of the x2 column is 0− (πr )TA2 = −14, so
we pivot on the x2 column.

I We compute that A−1B A2 = [6,−2/3, 8]T , so we append [−14, 6,−2/3, 8]T

to the CARRY matrix and pivot on the first row to obtain.

−ξ −2/3 4/3 2/3 −1
x2 1/6 1/6 −1/6 0
x1 4/9 1/9 2/9 0
x r3 2/3 −4/3 −2/3 1

I We compute that the relative cost of the x r2 column is
1− (πr )Te2 = 1 + 2/3 = 5/3 ≥ 0, so we are done (x r1 just left the basis and
the x3 and x4 columns are not admissible).



I From the carry matrix (πr )T = [−4/3,−2/3, 1], and we must compute θ.
I For j ∈ J = {3, 4}, we compute (πr )TAj , and we have that

(πr )TA3 = 4− 4 = 0, and (πr )TA4 = −4/3 + 2/3 + 1 = 1/3.
I Hence θ = min{(c4 − πTA4)/(1/3)} = min{(1− 13/14)/(1/3)} = 3/14
I We compute (π∗)T = πT + 3/14(πr )T = [ 16 ,

−1
2 ,

1
3 ] and set πT = (π∗)T .

I We compute J = {1, 2, 4} (we know 1 and 2 must be in J since x1 and x2
were in the basis at the end of the last iteration)

I Recall that our last CARRY matrix was
−ξ −2/3 4/3 2/3 −1
x2 1/6 1/6 −1/6 0
x1 4/9 1/9 2/9 0
x r3 2/3 −4/3 −2/3 1

I The relative cost of x4 is 0− (πr )T = −1/3 < 0, so we pivot on column 4
I A−1B A4 = [1/3,−1/9, 1/3]T , so we append [−1/3, 1/3,−1/9, 1/3]T to the

CARRY matrix and pivot on row 1, to obtain
−ξ −1/2 3/2 1/2 −1
x4 1/2 1/2 −1/2 0
x1 1/2 1/6 1/6 0
x r3 1/2 −3/2 −1/2 1

I x2 just left the basis and the relative cost of x r1 is 1 + 3/2 = 5/2 and the
relative cost of x r2 is 1 + 1/2 = 3/4, so we are done. And πT is not optimal
because ξ = 1/2 > 0.

I From the carry matrix (πr )T = [−3/2,−1/2, 1], and we must compute θ.

I For j ∈ J = {3}, we compute (πr )TAj , and we have that (πr )TA3 = 3/2.

I Hence θ = min{(c3 − πTA3)/(3/2)} = min{(3− (−7/2))/(3/2)} = 13/3

I We compute (π∗)T = πT + 13/3(πr )T = [− 19
3 ,
−8
3 ,

14
3 ] and set πT = (π∗)T ,

and J = {1, 3, 4}
I Recall that our last CARRY matrix was

−ξ −1/2 3/2 1/2 −1
x4 1/2 1/2 −1/2 0
x1 1/2 1/6 1/6 0
x r3 1/2 −3/2 −1/2 1

I The relative cost x3 is 0− (πr )TA3 = −3/2, so we pivot on column 3

I We compute A−1B A3 = [−9/2, 1/2, 3/2]T , so we append
[−3/2,−9/2, 1/2, 3/2]T to the CARRY matrix and pivot on row 3, to obtain

−ξ 0 0 0 0
x4 2 −4 −2 3
x1 1/3 2/3 1/3 −1/3
x3 1/3 −1 −1/3 2/3

I Since ξ = 0, we know the vector (− 19
3 ,
−8
3 ,

14
3 )T indeed is an optimal vector

in D and the corresponding optimal vector in P is (1/3, 0, 1/3, 2)T . The
optimal cost is 10/3.

The following table summaries the process.

Iteration πT w = πTb J (πr )T (πr )Tb θ

1 [1/3, 0, 0] 2
3 {1} [1,−3, 1] 3 5

42

2 [ 1942 ,
−5
14 ,

5
42 ] 43

42 {1, 2} [− 4
3 ,− 2

3 , 1] 2
3

3
14

3 [ 16 ,− 1
2 ,

1
3 ] 7

6 {1, 2, 4} [− 3
2 ,− 1

2 , 1] 1
2

13
3

4 [− 19
3 ,− 8

3 ,
14
3 ] 10

3 {1, 3, 4} [0, 0, 0] 0 N/A


