Matrix games

Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ defines a game, and we call \mathbf{A} the *payout matrix*. The row player is *Alice* and each row is called a *pure strategy* for Alice. The column player is *Bob* and each column is a *pure strategy* for Bob. If Alice plays pure strategy *i* and Bob play pure strategy *j*, Alice receives $a_{i,j}$ dollars from Bob. If $a_{i,j} < 0$, then this means that Alice pays Bob $-a_{i,j}$ dollars.

A vector \mathbf{y} is *stochastic* if $\mathbf{y} \ge \mathbf{0}$ and $\sum_{i=1}^{m} y_i = 1$. Throughout, assume \mathbf{x}, \mathbf{y} are stochastic vectors in \mathbb{R}^n and \mathbb{R}^m , respectively.

Let $\mathbf{A} = \{a_{ij}\}\)$ be an $m \times n$ payoff matrix. Any \mathbf{y} defines the *mixed strategy* for the row player, Alice, where she chooses each pure strategy i with probability y_i , and any \mathbf{x} defines a *mixed strategy* for the column player, Bob, where he chooses each pure strategy j with probability x_j . If Alice plays mixed strategy \mathbf{y} and Bob plays mixed strategy \mathbf{x} , then the *expected payout* is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} y_i a_{ij} x_j = \mathbf{y}^T A \mathbf{x}.$$

We say that stochastic $\tilde{\mathbf{y}} \in \mathbb{R}^m$ or stochastic $\tilde{\mathbf{x}} \in \mathbb{R}^n$ is *optimal* if it maximizes $\min_{\mathbf{x}} \tilde{\mathbf{y}}^T A \mathbf{x}$ or minimizes $\max_{\mathbf{y}} \mathbf{y}^T A \tilde{\mathbf{x}}$, respectively. It is not hard to see that for any stochastic $\bar{\mathbf{y}} \in \mathbb{R}^m$ and stochastic $\bar{\mathbf{x}} \in \mathbb{R}^n$,

(1)
$$\min_{\mathbf{x}} \bar{\mathbf{y}}^T A \mathbf{x} \le \mathbf{y}^T A \mathbf{x} \le \max_{\mathbf{y}} y^T A \bar{\mathbf{x}}.$$

Theorem (The Minimax Theorem). For every $A \in \mathbb{R}^{m \times n}$ there exists stochastic $\tilde{\mathbf{y}} \in \mathbb{R}^m$ and stochastic $\tilde{\mathbf{x}} \in \mathbb{R}^n$ such that

$$\min_{\mathbf{x}} \tilde{\mathbf{y}}^T A \mathbf{x} = \tilde{\mathbf{y}}^T A \tilde{\mathbf{x}} = \max_{\mathbf{y}} \mathbf{y}^T A \tilde{\mathbf{x}}.$$

Note that, using (1), it can be shown that the mixed strategies $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{x}}$ from the theorem are optimal. With $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{x}}$ from the theorem, the number $\tilde{\mathbf{y}}^T A \tilde{\mathbf{x}}$ is called the *value* of the game. We first prove the following proposition (\mathbf{e}_i is the *i*th standard basis vector).

Proposition. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and stochastic $\mathbf{y} \in \mathbb{R}^m$,

$$\min_{\mathbf{x}} \mathbf{y}^{T} A \mathbf{x} = \min_{j} \mathbf{y}^{T} A \mathbf{e}_{j} = \min_{j} \sum_{i=1}^{m} y_{i} a_{i,j}$$

For any stochastic $\mathbf{x} \in \mathbb{R}^n$,

$$\max_{\mathbf{y}} \mathbf{y}^{T} A \mathbf{x} = \max_{i} \mathbf{e}_{i}^{T} A \mathbf{x} = \max_{i} \sum_{j=1}^{n} a_{i,j} x_{j}$$

Proof. Clearly, $\min_{j} \mathbf{y}^{T} A \mathbf{e}_{j} = \min_{j} \sum_{i=1}^{m} y_{i} a_{i,j}$ and $\min_{\mathbf{x}} \mathbf{y}^{T} A \mathbf{x} \leq \min_{j} \mathbf{y}^{T} A \mathbf{e}_{j}$ since every standard basis vector is stochastic. So we now only need to show $\min_{\mathbf{x}} \mathbf{y}^{T} A \mathbf{x} \geq \min_{j} \sum_{i=1}^{m} y_{i} a_{i,j}$ to prove the first sentence. Let $t = \min_{j} \sum_{i=1}^{m} y_{i} a_{i,j}$. For any stochastic $\mathbf{x} \in \mathbb{R}^{n}$,

$$\mathbf{y}^{T} A \mathbf{x} = \sum_{j=1}^{n} \sum_{i=1}^{m} y_{i} a_{i,j} x_{j} = \sum_{j=1}^{n} x_{j} \left(\sum_{i=1}^{m} y_{i} a_{i,j} \right) \ge \left(\sum_{j=1}^{n} x_{j} \right) \cdot t = t.$$

This implies that $\min_{\mathbf{x}} \mathbf{y}^T A \mathbf{x} \ge t$, which proves the first sentence. The proof of the second sentence is similar.

Proof of the Minimax Theorem. We want to find an optimal \mathbf{x} which, by definition, is a stochastic vector \mathbf{x} that minimizes $\max_{\mathbf{y}} \mathbf{y}^T \mathbf{A} \mathbf{x}$. By the proposition, this is equivalent finding a vector \mathbf{x} that minimizes $\max_i \sum_{j=1}^m a_{i,j} x_j$ subject to $x_1 + \cdots + x_n = 1$ and $\mathbf{x} \ge \mathbf{0}$. By adding a variable w, we can write an LP whose solutions gives us the optimal \mathbf{x} as follows,

(2)

$$\begin{array}{ll}
\text{Minimize} & w \\
\text{subject to} & x_1 + \dots + x_n = 1 \\
& w \ge \sum_{j=1}^n a_{i,j} x_j & \text{for all } i \in [n] \\
& \mathbf{x} \ge \mathbf{0}
\end{array}$$

Similarly, we can write an LP whose solutions gives us an optimal \mathbf{y} as follows

(3)
Maximize
$$u$$

subject to $y_1 + \dots + y_m = 1$
 $u \leq \sum_{i=1}^m a_{i,j} y_i$ for all $j \in [m]$
 $\mathbf{y} \geq \mathbf{0}$

It is a good exercise to show that (2) and (3) are dual linear programs, and this observation gives us the theorem. \Box