
Matrix games

Any matrix A ∈ Rm×n defines a game, and we call A the payout matrix. The row player
is Alice and each row is called a pure strategy for Alice. The column player is Bob and each
column is a pure strategy for Bob. If Alice plays pure strategy i and Bob play pure strategy
j, Alice receives ai,j dollars from Bob. If ai,j < 0, then this means that Alice pays Bob −ai,j
dollars.

A vector y is stochastic if y ≥ 0 and
∑m

i=1 yi = 1. Throughout, assume x,y are stochastic
vectors in Rn and Rm, respectively.

Let A = {aij} be an m × n payoff matrix. Any y defines the mixed strategy for the row
player, Alice, where she chooses each pure strategy i with probability yi, and any x defines
a mixed strategy for the column player, Bob, where he chooses each pure strategy j with
probability xj. If Alice plays mixed strategy y and Bob plays mixed strategy x, then the
expected payout is

m∑
i=1

n∑
j=1

yiaijxj = yTAx.

We say that stochastic ỹ ∈ Rm or stochastic x̃ ∈ Rn is optimal if it maximizes minx ỹ
TAx

or minimizes maxy y
TAx̃, respectively. It is not hard to see that for any stochastic ȳ ∈ Rm

and stochastic x̄ ∈ Rn,

(1) min
x

ȳTAx ≤ yTAx ≤ max
y

yTAx̄.

Theorem (The Minimax Theorem). For every A ∈ Rm×n there exists stochastic ỹ ∈ Rm

and stochastic x̃ ∈ Rn such that

min
x

ỹTAx = ỹTAx̃ = max
y

yTAx̃.

Note that, using (1), it can be shown that the mixed strategies ỹ and x̃ from the theorem
are optimal. With ỹ and x̃ from the theorem, the number ỹTAx̃ is called the value of the
game. We first prove the following proposition (ei is the ith standard basis vector).

Proposition. For any A ∈ Rm×n and stochastic y ∈ Rm,

min
x

yTAx = min
j

yTAej = min
j

m∑
i=1

yiai,j.

For any stochastic x ∈ Rn,

max
y

yTAx = max
i

ei
TAx = max

i

n∑
j=1

ai,jxj.

Proof. Clearly, minj y
TAej = minj

∑m
i=1 yiai,j and minx y

TAx ≤ minj y
TAej since every

standard basis vector is stochastic. So we now only need to show minx y
TAx ≥ minj

∑m
i=1 yiai,j

to prove the first sentence. Let t = minj

∑m
i=1 yiai,j. For any stochastic x ∈ Rn,

yTAx =
n∑

j=1

m∑
i=1

yiai,jxj =
n∑

j=1

xj

(
m∑
i=1

yiai,j

)
≥

(
n∑

j=1

xj

)
· t = t.

This implies that minx y
TAx ≥ t, which proves the first sentence. The proof of the second

sentence is similar. �
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Proof of the Minimax Theorem. We want to find an optimal x which, by definition, is a
stochastic vector x that minimizes maxy y

TAx. By the proposition, this is equivalent finding
a vector x that minimizes maxi

∑m
j=1 ai,jxj subject to x1 + · · · + xn = 1 and x ≥ 0. By

adding a variable w, we can write an LP whose solutions gives us the optimal x as follows,

(2)

Minimize w
subject to x1 + · · ·+ xn = 1

w ≥
∑n

j=1 ai,jxj for all i ∈ [n]
x ≥ 0

Similarly, we can write an LP whose solutions gives us an optimal y as follows

(3)

Maximize u
subject to y1 + · · ·+ ym = 1

u ≤
∑m

i=1 ai,jyi for all j ∈ [m]
y ≥ 0

It is a good exercise to show that (2) and (3) are dual linear programs, and this observation
gives us the theorem. �


