
Math-484 List of definitions and theorems

The makeup exam (Midterm 4) will cover the same material as Midterm 3, except there
will be a one or two questions covering material from Midterms 1 and 2. The following is a
short list of some topics from the older material that you should make sure to review if you
are taking the make-up exam on December 9th. (Proofs are only for D14 (4 credit hour)
students )

- Taylor’s formula for functions from Rn to R (Theorem 1.2.4)
- Coercive functions and minimization (Theorem 1.4.4, with proof)
- Building convex function from other convex functions (Theorem 2.3.10)
- Principal minors of matrix A and there relation to positive(negative) (semi)definite matri-
ces A (Theorem 1.3.3)
- Eigenvalues of a symmetric matrix and there relation to positive(negative) (semi)definite
matrices (Theorem 1.5.1)
- Describe transition form unconstrained geometric program to its dual using A-G inequality
(pages 67, 68).
- How to compute a best least squares solution of a system Ax = b? Theorem 4.1.2
- How to compute PM (orthogonal projection of Rm onto M) and the properties of PM?
Theorem 4.2.5
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Definitions (Midterm 3):
- epi(f) page 167
- feasible point (or feasible vector) of a program (P ) page 169
- feasible region of a program (P ) page 169
- consistent program (P ) page 169
- Slater point of a program (P ) page 169
- superconsistent program (P ) page 169
- solution of a program (P ) page 169
- convex program (P ) page 169
- MP for program (P ) page 172
- linear program (LP ) page 173
- Perturbation of P by z, P (z) page 174
- MP (z) page 174
- sensitivity vector of a program (P ) page 177
- Lagrangian L(x, λ) of a program (P )page 182
- complementary slackness conditions for a program (P ) page 184
- saddle point of the Lagranian of (P ) page 184
- KKT multipliers page 187
- general form of constrained geometric program (GP ) and its dual (DGP ) page 193
- dual of a convex program page 200-201
- h(λ) page 201
- MD page 201
- feasible vector for the dual (DP) page 201
- consistent dual program (DP) page 201
- solution of the dual program (DP) page 201
- dual of a linear program (DLP) page 202
- duality gap page 209
- absolute value penalty function page 217
- Courant-Beltrami penalty function page 219
- generalized penalty function page 223
- f ε(x) where f(x) is a convex function page 229
- (P ε), (DP ε), MP ε, MDε, hε(x), Lε(x, λ) when ε > 0 and (P ) is a convex program page 230
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Theorems and statements (Midterm 3):
(Try to not ignore assumptions - like if a function must be continuous etc.)
(Proofs are only for D14 (4 credit hour) students )
- What is a sufficient condition for existence of a unique closest vector from a set C to a
given vector x? Corollary 5.1.4
- State basic separation theorem. Theorem 5.1.5
- State Support theorem. Theorem 5.1.9
- State Theorem 5.1.10
- What can you say about the function MP (z) when (P) is superconsistent? Theorem 5.2.6
- Are there sufficient conditions for convex program (P ) to have a sensitivity vector?Theorem
5.2.8, with proof
- Can MP be computed from the sensitivity vector? (Theorem 5.2.11), with proof
- State Karush-Kuhn-Tucker Theorem (Saddle point version) Theorem 5.2.13
- State Karush-Kuhn-Tucker Theorem (Gradient form) Theorem 5.2.14
- State Extended Arithmetic-Geometric Mean Inequality include the condition for equality!
Theorem 5.3.1, with proof
- What are sufficient condition for a constrained geometric program (GP ) to have no duality
gap? Theorem 5.3.5
- State the (strong) duality theorem for linear programming page 203
- State the duality theorem for convex programming. Theorem 5.4.6
- State the theorem that gives properties of Courant-Beltrami penalty function. Theorem
6.2.3
- State the theorem about the convergence of the sequence of minimizers of the Courant-
Beltrami penalty functions when the objective function is coercive. Theorem 6.2.4 with
proof
- What is the effect of the coercive objective function on the duality? Theorem 6.3.1
- What can you say when (P ) is superconsistent and MP > −∞? Theorem 6.3.5?
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Definitions (Midterm 2, these may appear on Midterm 3):
- posynomial page 67
- unconstrained geometric program
- primal and dual geometric program page 67,68
- feasible solution
- consistent program
- best least squares kth degree polynomial page 135
- linear regression line page 135
- best least squares solution of linear system Ax = b page 136
- generalized inverse of a matrix A ∈ Rm×n page 136
- orthonormal vectors page 138
- QR of a matrix (page 139) - subspace of Rn page 141
- orthogonal complement of a subspace of Rn page 142
- PM - orthogonal projection of Rm onto M page 144
- underdetermined system of linear equations page 145
- H-inner product page 149
- H-norm page 149
- H-orthogonal vectors page 149
- H-orthogonal complement page 149
- H-generalized inversepage 150
- hyperplane H in Rn page 158
- boundary point of C ⊂ Rn page 158
- closure A of A ⊂ Rn page 163

Theorems and statements (Midterm 2):
(Try to not ignore assumptions - like if a function must be continuous etc.)
(Proofs are only for D14 (4 credit hour) students )
- Describe transition form unconstrained geometric program to its dual using A-G inequality
(pages 67, 68).
- How to compute a best least squares solution of a system Ax = b? Theorem 4.1.2
- What is the QR factorization of a matrix A and when does it exists? Theorem 4.1.5
- How to compute PM? (orthogonal projection of Rm onto M) Theorem 4.2.5

- If M ⊆ Rm is a subspace, then what is
(
M⊥)⊥? (Theorem 4.2.7)

- What is the form of solutions of underdetermined systems? Theorem 4.3.1, with proof
- What is the form of minimum norm solutions of underdetermined systems? (Theorem
4.3.2, with proof)
- What is the form of minimum H-norm solutions of underdetermined systems? (Theorem
4.4.2)
- If C ⊆ Rn is a convex set y ∈ Rn \C, then what is true if and only if x∗ ∈ C is the closest
vector to y in C? (Theorem 5.1.1)
- What is the characterization of the closest vector of a convex set to a given vector using
orthogonal complement? (Theorem 5.1.2, with proof)
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- What is a sufficient condition for existence of a closest vector from a set C to a given vector
x? (Theorem 5.1.3)

Definitions (from Midterm 1, these may appear on Midterm 3):
- cosine of two vectors page 6
- distance of two vectors x,y ∈ Rn page 6
- ball B(x, r) (what is x and r?) page 6
- interior D0 of set D ⊆ Rn page 6, page 164
- open set D ⊆ Rn page 6
- closed set D ⊆ Rn page 7
- compact set D ⊆ Rn page 6
- (global,local)(strict)minimizer and maximizer of a function f : Rn → R page 8
- critical point of a function f : Rn → R page 8
- gradient ∇f(x) where f : Rn → R page 10
- Hessian Hf(x) where f : Rn → R page 10
- quadratic form associated with a symmetric matrix A page 12
- (positive,negative)(semi)definite matrix page 13
- indefinite matrix page 13
- saddle point of a function f : Rn → R page 23
- ∆k, the kth principal minor of a matrix A page 16
- coercive functions page 25
- eigenvalues and eigenvectors of a matrix A page 29
- convex sets in Rn page 38
- closed and open half-spaces in Rn page 40
- convex combination of k vectors from Rn page 41
- convex hull of D ⊆ Rn page 42
- (strictly) convex and concave function f : C → R, where C ⊆ Rn page 49

Theorems and statements (from Midterm 1):
(Try to not ignore assumptions - like if a function must be continuous etc.)
(Proofs are only for D14 (4 credit hour) students )
- State Cauchy-Swartz inequality (page 6)
- Minimizers and maximizers of continuous function f : I → R where I ⊂ R is a closed
interval (Theorem 1.1.4)
- local minimizers and the gradient (Theorem 1.2.3)
- Taylor’s formula for Rn (Theorem 1.2.4)
- Hf and global minimizers and maximizers? (Theorem 1.2.5/Theorem 1.2.9)
- Principal minors of matrix A and there relation to positive(negative) (semi)definite matri-
ces A (Theorem 1.3.3)
- Eigenvalues of a symmetric matrix and there relation to positive(negative) (semi)definite
matrices (Theorem 1.5.1)
- Hf and local minimizers and maximizers. (Theorem 1.3.6, with proof)
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- coercive functions and minimization (Theorem 1.4.4, with proof)
- The convex hull of D ⊆ Rn, co(D), is the set of all convex combinations of vectors from
D. (D ⊆ Rn) (Theorem 2.1.4)
- convex function and continuity (Theorem 2.3.1)
- minimizers of convex functions (Theorem 2.3.4 with proof)
- maximizers of concave functions (Theorem 2.3.4)
- the relationship between convex function and the gradient (Theorem 2.3.5)
- critical points of convex function and minimization (Theorem 2.3.5 + Corollary 2.3.6)
- The relationship between the Hessian and convexity of a function (in Rn) (Theorem 2.3.7)
- building convex function from other convex functions (Theorem 2.3.10)
- inequality involving convex functions and convex combinations with the condition for equal-
ity (finite version of Jensen’s Inequality) (Theorem 2.3.3)
- arithmetic-geometric mean inequality with the condition for equality (Theorem 2.4.1 with
proof)
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