
USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

GDB, Pwntools, and Other Tools
February 21st, 2019

Today’s Goals
● Introduce several reverse engineering and exploitation tools and their purposes

○ These tools may be discussed further in future meetings
● Basic usage of GDB
● Understand several key features of pwntools

Announcements
● See ​https://sites.google.com/whitehatters.org/wcsc/announcements​ for CTFs we will be

playing in this week

Reading Material
● GDB ​Documentation

○ The ​archer fish​, GDB mascot
● Pwndbg​ - GDB Plug in

○ Features
● Pwntools ​Documentation
● Radare2
● Binary Ninja
● Angr

Introduction to the Tools
Below is an a list of tools for reverse engineering and exploit generation. Note that all of the
tools can be found at ​https://sites.google.com/whitehatters.org/wcsc/new-members​ under the
reverse engineering section.

Why these tools? Each of these tools serves a unique purpose, and have been found to be
quite useful while working on CTF challenges. In addition, they provide a solid set of tools for
increasing your understanding of the reversing material we cover during meetings.

Today we will be focusing on GDB and Pwntools, which I believe are the two most essential
tools for beginning to develop your security knowledge in reverse engineering.

1

https://sites.google.com/whitehatters.org/wcsc/announcements
https://www.gnu.org/software/gdb/documentation/
https://www.youtube.com/watch?v=4T1SQtavaUM
https://github.com/pwndbg/pwndbg
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md
http://docs.pwntools.com/en/stable/
https://www.radare.org/r/
https://binary.ninja/
https://angr.io/
https://sites.google.com/whitehatters.org/wcsc/new-members

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

GDB—The GNU Project Debugger
The GNU Debugger, like most other debuggers, allows users to examine the execution of a
program by setting breakpoints. The GNU debugger is meant to examine ELF executables, and
provides a wide range of capabilities, including disassembling code segments and examining
register values.

GDB has been seen several times already for these meetings, but today we will go over some
of the most common commands.

Pwndbg and PEDA—GDB Extensions
These GDB extensions provide several common commands that make working with GDB
easier. The most notable addition is the context provided after reaching each breakpoint (i.e. the
debugger will print the stack, registers, and code every time a breakpoint is reached). The
image below shows the context in PEDA.

When we discuss GDB in the following section, we will examine a few pwndbg commands.

Binary Ninja and IDA—Reversing Frameworks with a GUI
Binary Ninja and IDA provide a graphical interface for disassembling and reverse engineering
programs. IDA is an industry standard, and is very popular, but has a hefty price range. Binary

2

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Ninja is relatively new, and has some very nice features for a much more affordable price. Let’s
take a look at a program in Binary Ninja to get a grasp of the features.

Radare2—Reversing Framework
Radare2 provides an entire framework for reverse engineering, including debugging, patching,
and visual control flow graphs. Radare2 is one of the most flexible, free, and powerful reversing
tools out there (take a look at their ​comparison​ chart), but it has a steep learning curve. Let’s
take a look at the same program we looked at in Binary Ninja with Radare2.

Use s main, aaa, agf to print the control flow graph for main. Show off the question mark
command.

Pwntools—Python Library for Exploit Development
From their website, “pwntools is a CTF framework and exploit development library.” Pwntools is
written in Python, and provides many convenient functions for quickly solving CTF challenges.
These functions include generating assembly and shellcode, ELF analysis such as symbol

3

https://www.radare.org/r/cmp.html

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

lookup, finding ROP gadgets, and printing values in little/big endian. We will take a look at
several of these key features in the following section.

Angr—Concolic Analysis and Reversing Framework

What is concolic analysis? It is a combination of static (or concrete) and dynamic symbolic
analysis.

Angr also provides several different useful tools, but symbolic execution is the most useful and
unique capability it provides, and thus the focus for us.

The ​image below​ is a great tool for explaining at a high level what is going on in Angr.

 In symbolic execution, each execution is a new state and the required values to reach that state
are stored. In angr, to my knowledge, only branching states are stored to reduce the number of
states. In the above diagram, you can see angr beginning to simulate state B. At each branch,
angr creates an additional limit or test on the symbolic variable that must be true to reach that
state. So, to reach state C, you must set X> 0 AND have y==3.

4

http://angr.io/blog/angr_symbion/

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Where is this useful? Crackme challenges, which are comparable to busting licensing in
software. In a crackme challenge, the goal is to determine some valid input that passes the
validation checks. Angr could be used to simulate the execution and find what the value of the
variable is when the correct code is reached. For example, say a crackme outputs “yay, you
win” when xyz is entered. Angr can symbolically run to that point, and output the value needed
to achieve that state.

If there is interest in the topic, a future meeting could discuss symbolic execution, and how angr
does it, in more detail. It’s still a ast advancing research field in my opinion.

GDB
● Disassemble
● Break
● Step
● Stack (pwndbg)
● Info reg

Let’s take a look at a few GDB commands and what they do:

Command Shortcut Purpose

Help, help break h, h disass Prints a help message for the given
command. No argument gives general
help

break main, break 0x4000,
break *main+0x4

b main Sets a breakpoint at the specified
address; note that an address or function
name can be used

Run, run a b c r Run the program with arguments a, b, and
c. Standard in/output redirection works like
in bash (see below for a useful one)

run < <(python file) Pipes the output of a command (such as
python) as the stdin of the program

continue c Continue the program as normal until the
next breakpoint

disassemble main,
disassemble 0x4000,
disassemble *main+0x4

disass main Disassembles at the specified address
and prints the resulting assembly code

5

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

step, step 10 s Steps a specified number of instructions

next, next 10 n Steps the specified number of instructions,
stepping over function calls

finish f Finishes the current function, then breaks

info breakpoints, info reg,
info reg eax

i b, i r, i r eax Prints out the current breakpoints, register
values, etc. See help i for more values

delete 1 del 1 Deletes breakpoint 1

stack stack Prints the stack (pwndbg command)

registers

regs Prints the registers (pwndbg)

context context Prints the context; code, stack, registers,
etc. (pwndbg)

Pwntools
Let’s take a look at some useful ​pwntools​ commands:

from​ pwn ​import​ *

Open a "remote" connection

def​ ​show_local_remote​():
try​:

c = remote(​"localhost"​, ​2000​)
except​:

return

c.sendline(​"Please write 'me'"​)

print​ c.recvuntil(​"me"​) ​# Wait until nc writes "me"
print​ c.recvline()
c.interactive() ​# Switch over to an interactive session

Connects to localhost over ssh. Could be another remote server

def​ ​show_ssh​():
c = ssh(host=​"localhost"​, user=​"test"​, password=​"test"​)
c.interactive()

6

http://docs.pwntools.com/en/stable/about.html

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Connects to localhost over ssh, then starts a process

def​ ​ssh_proc​():
c = ssh(host=​"localhost"​, user=​"test"​, password=​"test"​)
p = c.process(​"python"​)
p.interactive()

Shows off the default byte packing functions

def​ ​p32Demo​():
print​ ​"\xde\xad\xba\xbe"​.encode(​"hex"​)
print​ p32(​0xcafebabe​).encode(​"hex"​)
print​ p32(​0xcafebabe​, endian=​"big"​).encode(​"hex"​)
print​ p64(​0xdeadbeef​).encode(​"hex"​)

def​ ​gdb_proc​():
gdb.debug(​"./a.out"​) ​# Attaches GDB, and stops at first instruction

One way to start GDB, however, the

process may terminate before GDB attaches

p = process("bash")

gdb.attach(p)

p.interactive()

Start a local process

def​ ​local_proc​():
p = process([​"python"​])
p.sendline(​'print "Hi there from python!"'​)
p.shutdown(​'send'​)
print​ p.recvall()

7

