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Presentation Notes
LWE is a versatile, robust problem that is the basis of many cryptosystems.
(Robust means it remains hard even if some information is leaked).
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Because there are worst-case problems that reduce to LWE, the random (average-case) distributions used for practical cryptographic applications are just as hard to solve as the hardest (worst-case) instances we can come up with.
This makes LWE a strong basis for cryptography.
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In our work we assume that all lattices are full rank (so n=k)
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LWE can be seen as a version of BDD in which the lattice vector (x=s) is shifted by some small error vector (b = a s + e).
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In practice we care about time 2^60, but 2^256 is longer than the believed age of the universe, so (a) is usually irrelevant  in practice.
(b) is what we usually want because security models rely on limited computational power.�
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Limiting the number of oracle calls is essential to maximizing the success probability of reduction algorithms.
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“Solve” is defined formally in the paper, but we do not cover this in the talk.�In particular, we must define carefully what success probability means for probabilistic decision problems (we use a slight relaxation of OPP algorithms for this to make sense for probabilistic problems).
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