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Cryptographic from LWE

LWE

IND-CPA-secure

Public-Key Encryption
[Regev, 2005]

CCA-secure
Encryption

\ [Peikert, 2009]

Key Exchange Scheme
[Ding-Xie-Lin, 2012],
[Peikert, 2014]



Presenter Notes
Presentation Notes
LWE is a versatile, robust problem that is the basis of many cryptosystems.
(Robust means it remains hard even if some information is leaked).
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Presenter Notes
Presentation Notes
Because there are worst-case problems that reduce to LWE, the random (average-case) distributions used for practical cryptographic applications are just as hard to solve as the hardest (worst-case) instances we can come up with.
This makes LWE a strong basis for cryptography.
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Learning With Errors

LWE, 4 : ndimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, (a,s) + e), where

a« Z’I} uniformly random, s € Z’I} unknown, e < ¢ small error,

(search-LWE) output S.
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Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.


Learning With Errors

LWE, 4 : ndimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, (a,s) + e), where

a« Z’{,‘ uniformly random, s € Z’{,‘ unknown, e < ¢ small error,

(search-LWE) output S.

nk <



Presenter Notes
Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.


Learning With Errors

LWE

npe - hdimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, b), where
a < Zz uniformly random and b € Z,,
(decision-LWE) output

YES if samples are from the LWE distribution for s and ¢,

NO if samples are uniformly random.


Presenter Notes
Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.


Lattices

Lattice:
An infinite discrete set of vectors in R™

consisting of all integer linear combinations
L ={a;b; +--+aib,: ay,..,a; € Z}

of some linearly independent vectors b, ..., b, € R™.

Theset{b,, ..., b, }is called a basis.



Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)


Shortest Vector Problem

SVP | :

Given a basis B for lattice £ c R",

find a shortest non-zero lattice vector x, L

i.e.x € L\ {0}, such that [|x]|| = 4, (£). o o



Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.
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Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.


Bounded Distance Decoding

BDD, : «a > 0 distance approximation factor
. . . . . .
Given a basis B for a full-rank lattice £L € R"
and a target vector v € R" close to the lattice, o o \\\
| .&\
|\ Vv ,'
find a lattice vector x € L closestto v, ® ° '\ e

i.e. X € Lsuchthat|lv—x]||, < a-21;(L).


Presenter Notes
Presentation Notes
LWE can be seen as a version of BDD in which the lattice vector (x=s) is shifted by some small error vector (b = a s + e).


Hardness of LWE

[Regev, 2009] — quantum reduction from worst-case lattice problems to decision-LWE

quantum classical

GapSVP, > |BDD,, > | LWEn,¢




Hardness of LWE

[Peikert, 2009] — classical reduction, but modulus becomes exponential

GapSVP,

classical

g
»

BDD,,

classical

) )

LWE 5,6

p = exp(n)




Hardness of LWE

[Brakerski, Peikert, Langlois, Regev, Stehle, 2013] — classical reduction with polynomial modulus

classical classical

GapSVP, > BDD, > | LWE, 5

l classical

binary-LWE, 2 , 4

l classical

p = poly(n) | LWE,2, 4
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LWE, 2 , 4

p = poly(n)




Algorithms for Lattice Problems

GapSVP, | — BDD, | —— | LWE;, 4 | — binary-LWE, 2, 4 | ——— LWE, 2 , 4

R

Fastest algorithms for these

oroblems run in 29 time
(for polynomial approximation factor).


Presenter Notes
Presentation Notes
LLL algorithm for lattice basis reduction is the best known polynomial-time algorithm.
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Conjecture: known algorithms
are the best possible
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[Blum-Kalai-Wasserman, 2000] — Best known algorithm for LWE,, ,, 5 runs in 201087 /1081 time,

GapSVP,| —— BDD, —

Conjecture: known algorithms
are the best possible

LWE;, .6

binary-LWE, 2, 4

LWE cannot be solved in less

—

than 220/7) time.

LWE, 2 , 4




What the Reduction says about LWE Algorithms

[Blum-Kalai-Wasserman, 2000] — Best known algorithm for LWE,, ,, 5 runs in 201087 /1081 time,
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Closing the Gap

How to close this gap?

We change our perspective!



Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?



Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?
(a) The fastest algorithm for breaking the cryptosystem runs in 22° time.

(b) No reasonably efficient algorithm can break the cryptosystem with probability > 272°°.


Presenter Notes
Presentation Notes
There are differing notions of this, but there is no conventional universal definition. Here are two main contenders.


Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?

(a) The fastest algorithm for breaking the cryptosystem runs in 22° time.

(b) No reasonably efficient algorithm can break the cryptosystem with probability > 272°°.

This is what we usually want
for cryptographic security



Presenter Notes
Presentation Notes
In practice we care about time 2^60, but 2^256 is longer than the believed age of the universe, so (a) is usually irrelevant  in practice.
(b) is what we usually want because security models rely on limited computational power.�


An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.


Presenter Notes
Presentation Notes
This gives us a natural, practical alternative way to measure hardness.
This is a well-studied notion in complexity theory.
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This is a well-studied notion in complexity theory.


An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.

Can we study worst-case to average-case reductions under this framework?

Yes (this talk!)


Presenter Notes
Presentation Notes
Given that LWE is the basis for many post-quantum cryptosystems, this is right framework to consider.
This is a well-studied notion in complexity theory.
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Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE,, , 4 is )

All other algorithms are not PPT, so it is unlikely that we can achieve better than this.



Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)
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Known techniques do not seem to improve this when restricted to PPT algorithms,

so it is unlikely that we can achieve much better than this.



Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)

Known techniques do not seem to improve this when restricted to PPT algorithms,

so it is unlikely that we can achieve much better than this.

BDD,, is closely related to GapSVP, for y = poly(n) = l,

(04

so it is unlikely we can achieve better than known algorithms.



A Natural Conjecture

Conjecture:

(informal) No algorithm can solve BDD, on an arbitrary n-rank lattice for « = 1/poly(n)

in polynomial time with success probability better than p—n*/logn


Presenter Notes
Presentation Notes
Proving this conjecture is an open problem.


What We Show

Trivial algorithm:  Success probability for efficiently solving LWE,, ,, 4 is DR

Conjecture = Maximum success probability for efficiently solving LWE,, ,,  is p~ "/ o)




What We Show

Trivial algorithm: Success probability for efficiently solving LWE,, ,, 4 is DR

Tight!

Conjecture = Maximum success probability for efficiently solving LWE,, ,,  is p~ "/ log® n),




Limitations of the Original Reduction

BDD,,

poly calls

mod-BDD,, ,,

1 call

LWE

1 call

n,p,o

poly calls

gen-LWE,, , p

binary-LWE, 2, 4

1 call

LWE, 2 , 5




Limitations of the Original Reduction

1 call 1 call

BDD,, LWE, , 4 — binary-LWE, 2, 4 | —— LWE, 2 ,
poly calls poly calls Making polynomially many oracle calls
causes an exponential loss in success probability!

mod-BDD, ,, | — | gen-LWE, ,, 1

1 call


Presenter Notes
Presentation Notes
CHECK WHICH REDUCTION HAVE POLY # CALLS
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Success probability of solving Q is = € = success probability of solving P is = el



Limitations of the Original Reduction

Reduction algorithm for P — Q makes k calls to oracle for Q.
Success probability of solving Q is = € = success probability of solving P is = =5

Success probability of solving P is < & = success probability of solving Q is < o1/k,



Limitations of the Original Reduction

Reduction algorithm for P — Q makes k calls to oracle for Q.
Success probability of solving Q is = € = success probability of solving P is = &3

Success probability of solving P is < & = success probability of solving Q is < o1/k,

We want just O(1) oracle calls to get a meaningful conclusion.



BDD,,

1 call

A 4

mod-BDD,, ,,

1 call

Our Reduction

LWEn’p’gb 1 call
1 call
gen-LWE,, ,, p

binary-LWE, 2 , 4

1 call

LWE; 2 , 4

We make a single oracle call in each step
and suffer at most a polynomial loss
in success probability.



Presenter Notes
Presentation Notes
Limiting the number of oracle calls is essential to maximizing the success probability of reduction algorithms.


BDD,,

1 call

A 4

mod-BDD, ,,

1 call

Our Reduction

LWEn’p’(p 1 call
1 call
gen-LWE;, ,, p

binary-LWE, 2 , 4

1 call

LWE,; 2 , 4

We use the same techniques as [Regev, 2005] and [Brakerski+, 2013],
but with great care to the explicit loss in success probability and number of oracle calls.




Our Main Result

Theorem 1: (informal) If no PPT algorithm can solve BDD,, fora € (0,1/2)

7
. . - o=
with success probability greater than 2 <1°8 n>,

then no PPT algorithm can solve search-LWE,, , 4 (even for binary secret)

n

for dimension n, and modulus p = poly(n) with success probability 2 logn,




BDD,,

mod-BDD, ,,

Our Reduction

LWE, pop | —

binary-LWE, 2 , 4

— | gen -LWEn,p,@

LWE, 2 , 4



Presenter Notes
Presentation Notes
Not as straightforward as it looks, there is a detour


success prob. g

Trivial: blow up

modulus top = 2™

BDD,,

success prob. g

mod-BDD, ,,

Our Proof Techniques



Our Proof Techniques

mod-BDD, ,, | — | gen-LWE,, ,,

success prob. \_/ success prob.

q—¢€ q
Generate discrete Gaussian

samples and use them to
generate LWE samples




Our Proof Techniques

success prob. g

LWE

a

n,p,o

Carefully sample Gaussian
noise that guarantees
optimal success probability

gen-LWEn,p,D

success prob.
q

(1+¢€)3




Our Proof Techniques

success prob. g success prob. g success prob. g

LWE — | binary-LWE, 2, o | ——— |LWE, 2 ,, 4

n,p,o

These reductions preserve success probability



Our Second Result

Theorem 2: (informal) If no algorithm can solve search-LWE,, ,, for polynomial modulus
with success probability & in expected polynomial time,
then no PPT algorithm can “solve” decision-LWE,, ,,

with probability = «a.


Presenter Notes
Presentation Notes
“Solve” is defined formally in the paper, but we do not cover this in the talk.�In particular, we must define carefully what success probability means for probabilistic decision problems (we use a slight relaxation of OPP algorithms for this to make sense for probabilistic problems).


Future Directions

Establish a similar result for GapSVP — BDD (or prove impossibility).

Reductions BDD — search-LWE and search-LWE — decision-LWE are disconnected,
because expected polynomial-time is a fundamental part of the second reduction.

|s a workaround possible?

Use this alternative framework to study the complexity of other computational problems

relevant to cryptography or learning.



Future Directions

Establish a similar result for GapSVP — BDD (or prove impossibility).

Reductions BDD — search-LWE and search-LWE — decision-LWE are disconnected,
because expected polynomial-time is a fundamental part of the second reduction.

|s a workaround possible?

Use this alternative framework to study the complexity of other computational problems

relevant to cryptography or learning.

Thank you! Questions?
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