Worst-case to Average-case Hardness of LWE:

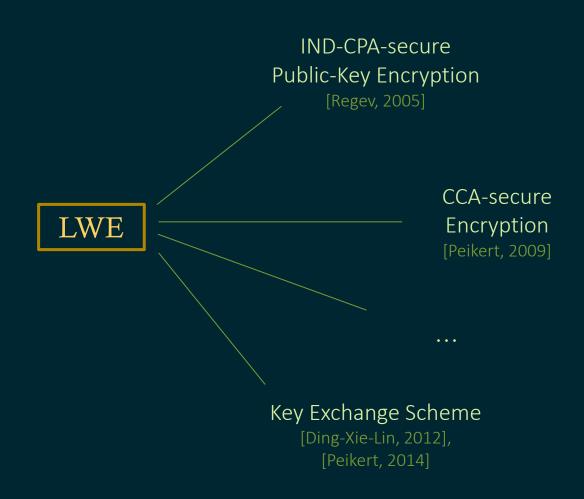
An Alternative Perspective

Divesh Aggarwal

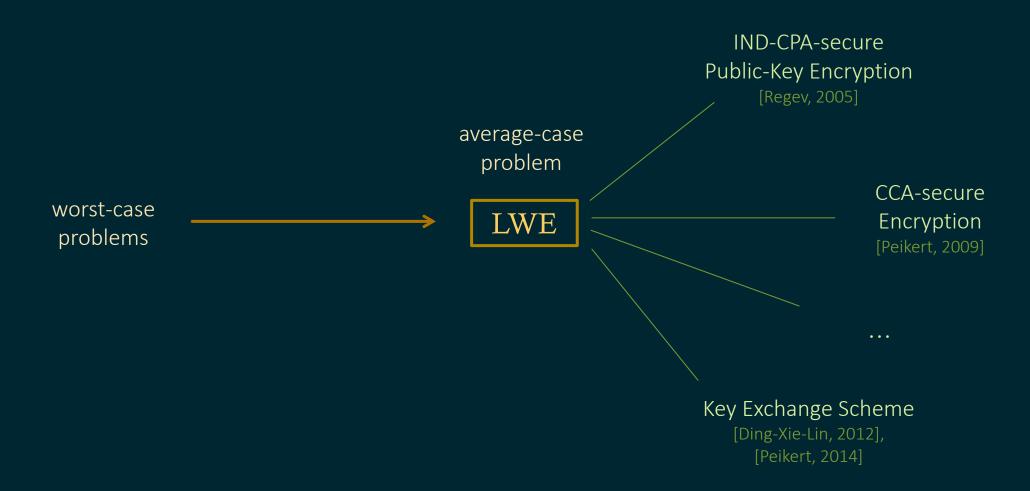
Leong Jin Ming

Alexandra Veliche

Cryptographic from LWE

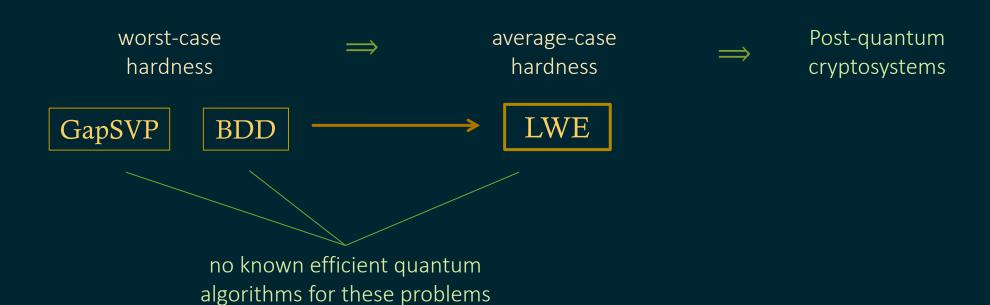


Cryptographic Significance



Cryptographic Significance

Cryptographic Significance



Learning With Errors

```
LWE_{n,p,\phi}: n dimension, p modulus, \phi \sim \mathbb{R}/\mathbb{Z} error distribution Given noisy samples (\mathbf{a}, \ \langle \mathbf{a}, \mathbf{s} \rangle + e), where \mathbf{a} \leftarrow \mathbb{Z}_p^n uniformly random, \mathbf{s} \in \mathbb{Z}_p^n unknown, \mathbf{e} \leftarrow \phi small error, (search-LWE) output \mathbf{s}.
```

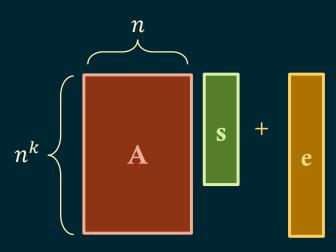

Learning With Errors

 $\mathbf{LWE}_{n,p,oldsymbol{\phi}}$: n dimension, p modulus, $\phi \sim \mathbb{R}/\mathbb{Z}$ error distribution

Given noisy samples $(a, \langle a, s \rangle + e)$, where

 $\mathbf{a} \leftarrow \mathbb{Z}_p^n$ uniformly random, $\mathbf{s} \in \mathbb{Z}_p^n$ unknown, $\mathbf{e} \leftarrow \phi$ small error,

(search-LWE) output **s**.



Learning With Errors

 $|\mathbf{LWE}_{n,p,oldsymbol{\phi}}|: n ext{ dimension, } p ext{ modulus, } oldsymbol{\phi} \sim \mathbb{R}/\mathbb{Z} ext{ error distribution}$

Given noisy samples (a, b), where

 $\mathbf{a} \leftarrow \mathbb{Z}_p^n$ uniformly random and $\mathbf{b} \in \mathbb{Z}_p$,

(decision-LWE) output

- YES if samples are from the LWE distribution for ${f s}$ and ${f \phi}$,
- NO if samples are uniformly random.

Lattices

Lattice:

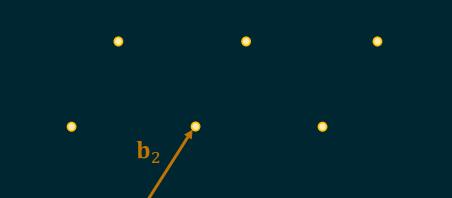
An infinite discrete set of vectors in \mathbb{R}^n

consisting of all integer linear combinations

$$\mathcal{L} = \{a_1 \mathbf{b}_1 + \dots + a_k \mathbf{b}_k : a_1, \dots, a_k \in \mathbb{Z}\}$$

of some linearly independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathbb{R}^n$.

The set $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is called a *basis*.



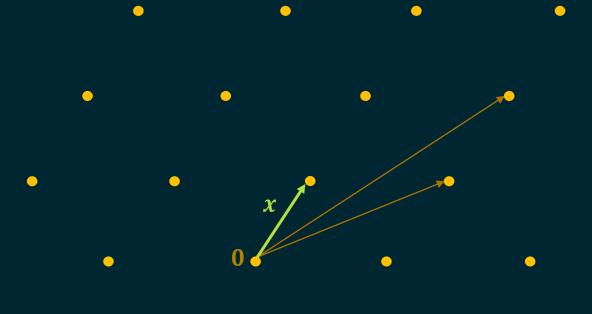
Shortest Vector Problem

SVP |

Given a basis \mathbf{B} for lattice $\mathbf{L} \subset \mathbb{R}^n$,

find a shortest non-zero lattice vector \boldsymbol{x} ,

i.e. $x \in \mathcal{L} \setminus \{0\}$, such that $||x|| = \lambda_1(\mathcal{L})$.



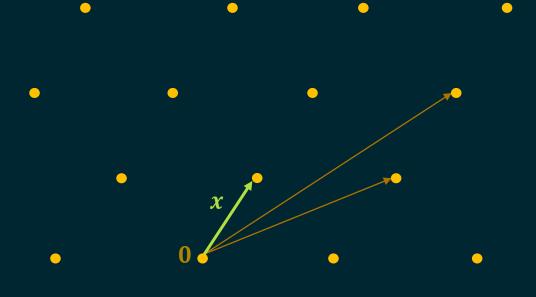
Shortest Vector Problem

SVP |

Given a basis \mathcal{B} for lattice $\mathcal{L} \subset \mathbb{R}^n$,

find a shortest non-zero lattice vector \boldsymbol{x} ,

i.e. $x \in \mathcal{L} \setminus \{0\}$, such that $||x|| = \lambda_1(\mathcal{L})$.



Bounded Distance Decoding

 BDD_{α}

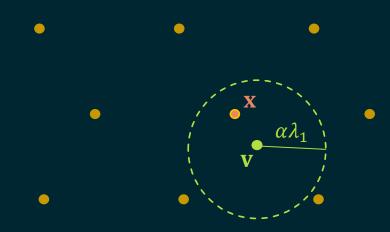
lpha > 0 distance approximation factor

Given a basis \mathcal{B} for a full-rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$

and a target vector $\mathbf{v} \in \mathbb{R}^n$ close to the lattice,

find a lattice vector $x \in \mathcal{L}$ closest to \mathbf{v} ,

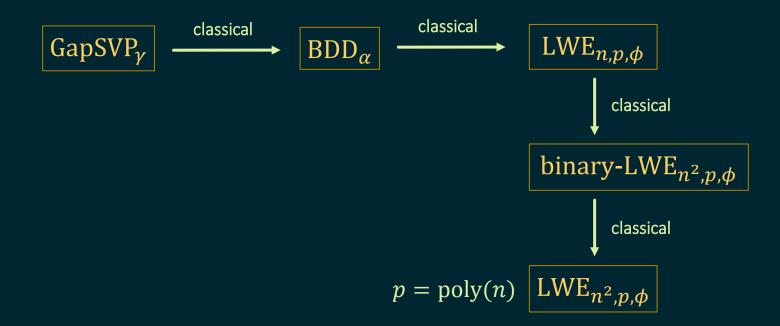
i.e. $\mathbf{x} \in \mathcal{L}$ such that $\|\mathbf{v} - \mathbf{x}\|_2 < \alpha \cdot \lambda_1(\mathcal{L})$.



[Regev, 2009] — quantum reduction from worst-case lattice problems to decision-LWE

[Peikert, 2009] — classical reduction, but modulus becomes exponential

[Brakerski, Peikert, Langlois, Regev, Stehle, 2013] — classical reduction with polynomial modulus

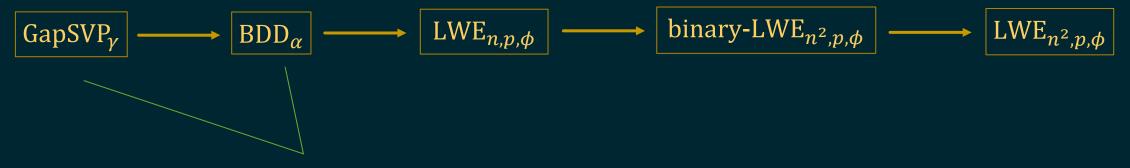


$$\boxed{ \text{GapSVP}_{\gamma} \longrightarrow \boxed{ \text{BDD}_{\alpha} } \longrightarrow \boxed{ \text{LWE}_{n,p,\phi} } \longrightarrow \boxed{ \text{binary-LWE}_{n^2,p,\phi} } \longrightarrow \boxed{ \text{LWE}_{n^2,p,\phi} }$$

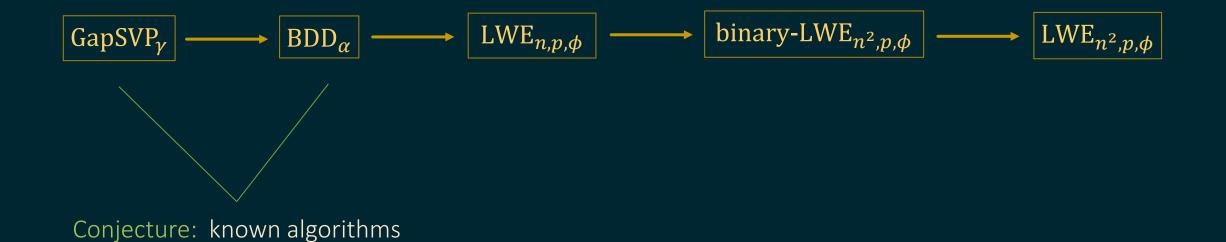
$$p = \exp(n)$$

$$p = \operatorname{poly}(n)$$

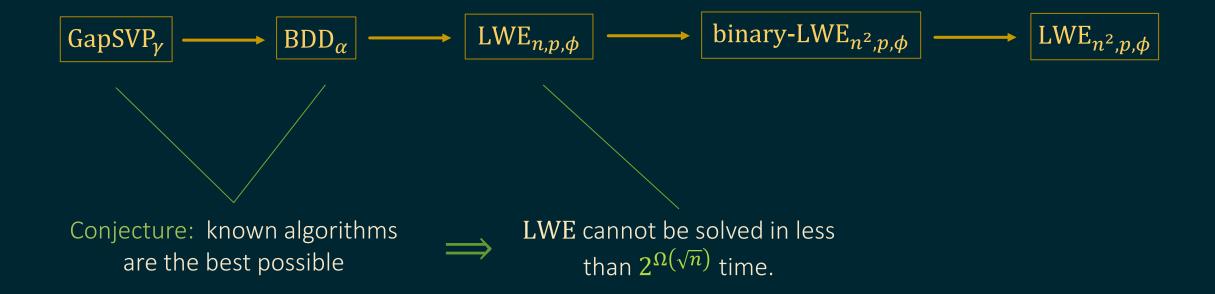
Algorithms for Lattice Problems



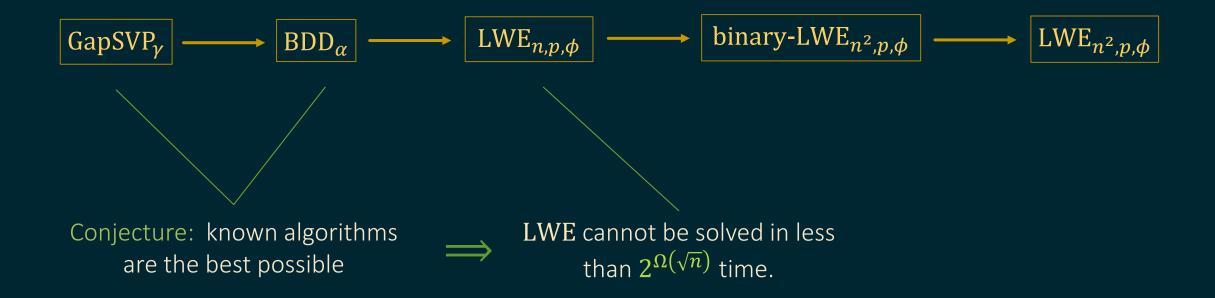
Fastest algorithms for these problems run in $2^{\Theta(n)}$ time (for polynomial approximation factor).



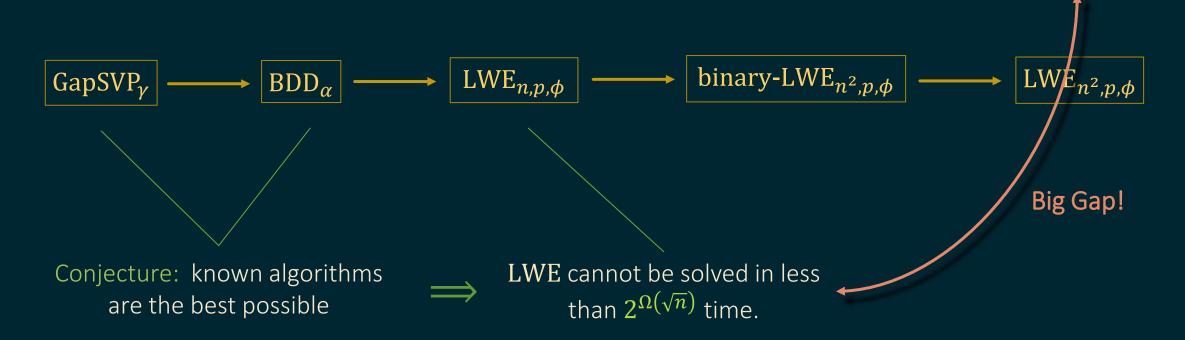
are the best possible



[Blum-Kalai-Wasserman, 2000] — Best known algorithm for $LWE_{n,p,\phi}$ runs in $2^{O(n \log p / \log n)}$ time.



[Blum-Kalai-Wasserman, 2000] — Best known algorithm for $LWE_{n,p,\phi}$ runs in $2^{O(n \log p / \log n)}$ time.



Closing the Gap

How to close this gap?

We change our perspective!

Security in Practice

What does it mean for a cryptosystem to be 256-bit secure?

Security in Practice

What does it mean for a cryptosystem to be 256-bit secure?

- (a) The fastest algorithm for breaking the cryptosystem runs in 2^{256} time.
- (b) No reasonably efficient algorithm can break the cryptosystem with probability $> 2^{-256}$.

뻭

Security in Practice

What does it mean for a cryptosystem to be 256-bit secure?

- (a) The fastest algorithm for breaking the cryptosystem runs in 2^{256} time.
- (b) No reasonably efficient algorithm can break the cryptosystem with probability $> 2^{-256}$.

This is what we usually want for cryptographic security

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.

Can we study worst-case to average-case reductions under this framework?

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.

Can we study worst-case to average-case reductions under this framework?

Yes (this talk!)

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE_{n,p,ϕ} is $p^{-\Omega(n)}$.

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE_{n,p,ϕ} is $p^{-\Omega(n)}$.

All other algorithms are not PPT, so it is unlikely that we can achieve better than this.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving $GapSVP_{\gamma}$ is $2^{-\Theta(n^2/\log n)}$.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving $GapSVP_{\gamma}$ is $2^{-\Theta(n^2/\log n)}$.

Known techniques do not seem to improve this when restricted to PPT algorithms, so it is unlikely that we can achieve much better than this.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving $GapSVP_{\gamma}$ is $2^{-\Theta(n^2/\log n)}$.

Known techniques do not seem to improve this when restricted to PPT algorithms, so it is unlikely that we can achieve much better than this.

 BDD_{α} is closely related to GapSVP_{γ} for $\gamma = \mathrm{poly}(n) = \frac{1}{\alpha}$,

so it is unlikely we can achieve better than known algorithms.

A Natural Conjecture

Conjecture:

(informal) No algorithm can solve BDD_{α} on an arbitrary n-rank lattice for $\alpha=1/\mathrm{poly}(n)$ in polynomial time with success probability better than $2^{-n^2/\log n}$.

What We Show

Trivial algorithm: Success probability for efficiently solving LWE_{n,p, ϕ} is $p^{-\Omega(n)}$.

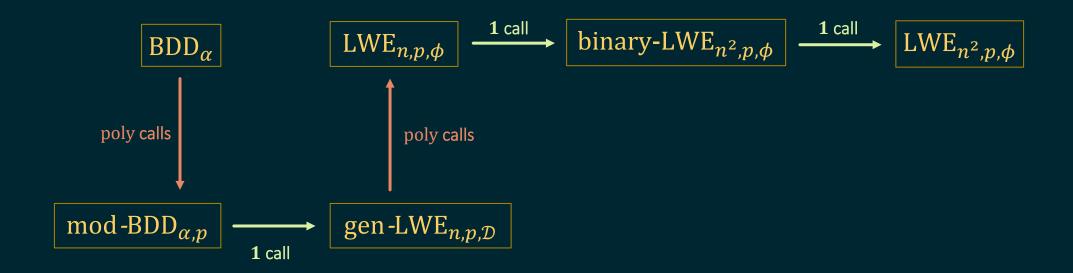
Conjecture \longrightarrow Maximum success probability for efficiently solving LWE_{n,p, ϕ} is $p^{-\Omega(n/\log^2 n)}$.

What We Show

Trivial algorithm: Success probability for efficiently solving LWE $_{n,p,\phi}$ is $p^{-\Omega(n)}$.

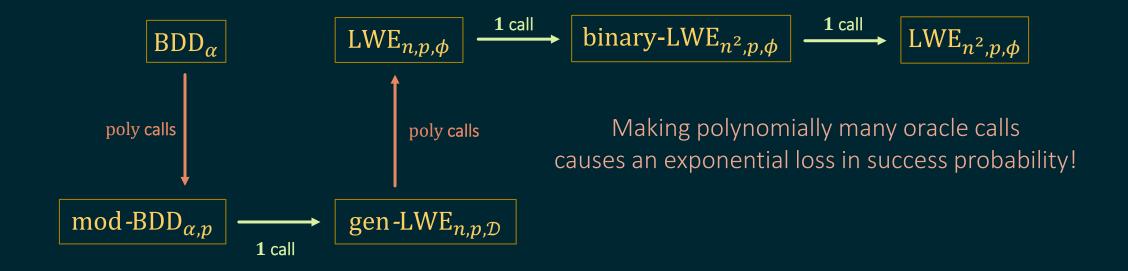
Tight!

Conjecture \Longrightarrow Maximum success probability for efficiently solving LWE_{n,p, ϕ} is $p^{-\Omega(n/\log^2 n)}$.



\equiv

Limitations of the Original Reduction



Reduction algorithm for $\mathcal{P} \to \mathcal{Q}$ makes k calls to oracle for \mathcal{Q} .

Success probability of solving Q is $\geq \epsilon \implies$ success probability of solving P is $\geq \epsilon^k$.

Reduction algorithm for $\mathcal{P} o \mathcal{Q}$ makes k calls to oracle for \mathcal{Q} .

Success probability of solving Q is $\geq \epsilon \implies$ success probability of solving \mathcal{P} is $\geq \epsilon^k$.

Success probability of solving \mathcal{P} is $\leq \delta \implies$ success probability of solving \mathcal{Q} is $\leq \delta^{1/k}$.

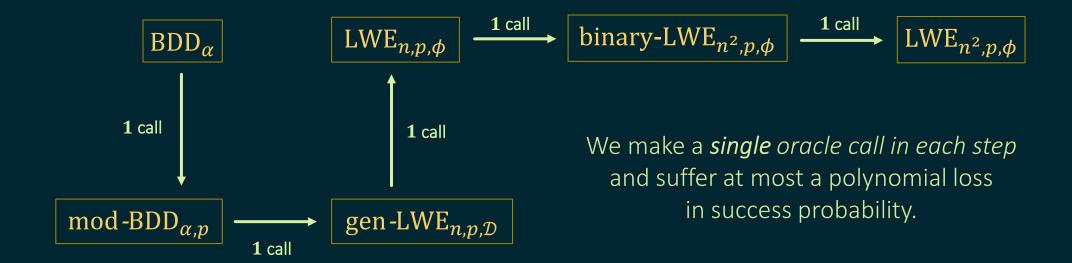
Reduction algorithm for $\mathcal{P} \to \mathcal{Q}$ makes k calls to oracle for \mathcal{Q} .

Success probability of solving Q is $\geq \epsilon \implies$ success probability of solving \mathcal{P} is $\geq \epsilon^k$.

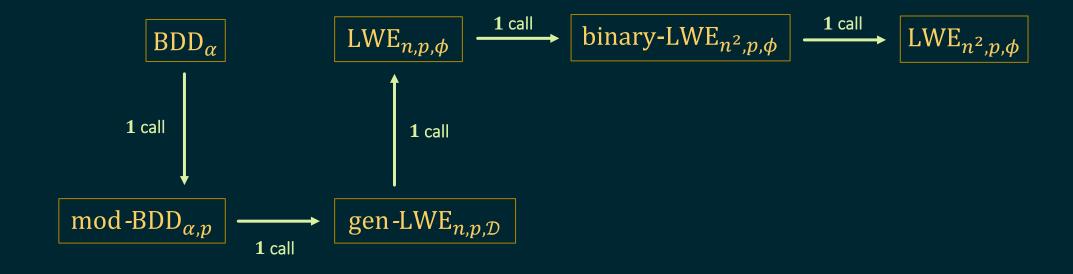
Success probability of solving $\mathcal P$ is $\leq \delta \implies$ success probability of solving $\mathcal Q$ is $\leq \delta^{1/k}$.

We want just O(1) oracle calls to get a meaningful conclusion.

Our Reduction



Our Reduction



We use the same techniques as [Regev, 2005] and [Brakerski+, 2013], but with great care to the *explicit loss in success probability* and *number of oracle calls*.

Our Main Result

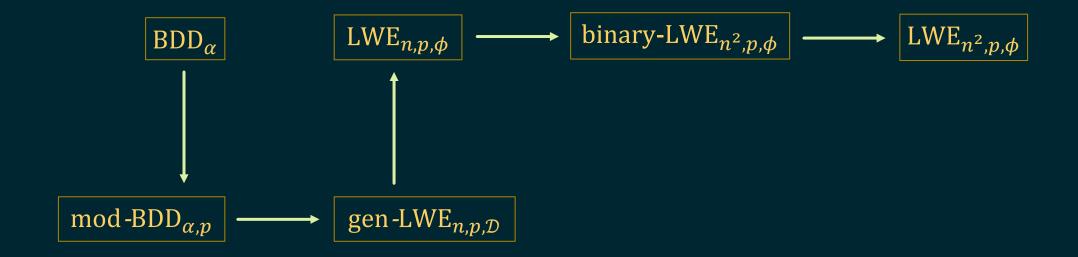
Theorem 1: (informal) If no PPT algorithm can solve BDD_{α} for $\alpha \in (0, 1/2)$

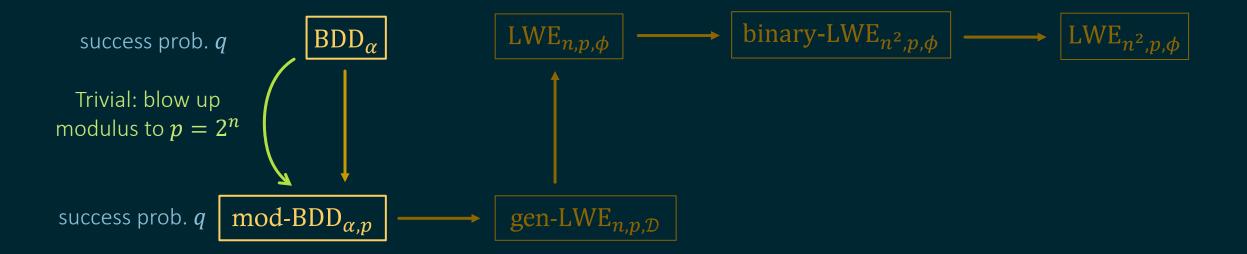
with success probability greater than $2^{-\Omega\left(\frac{n^2}{\log n}\right)}$,

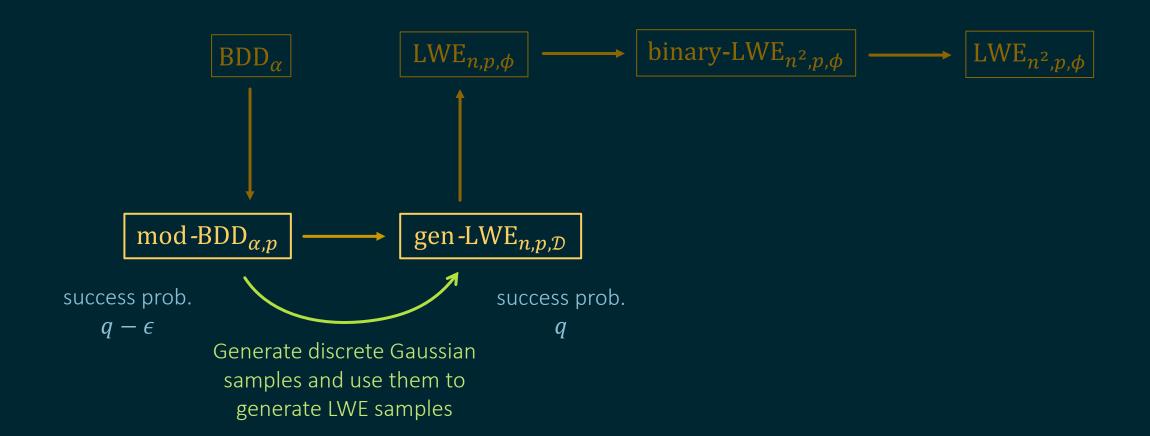
then no PPT algorithm can solve search-LWE_{n,p,ϕ} (even for binary secret)

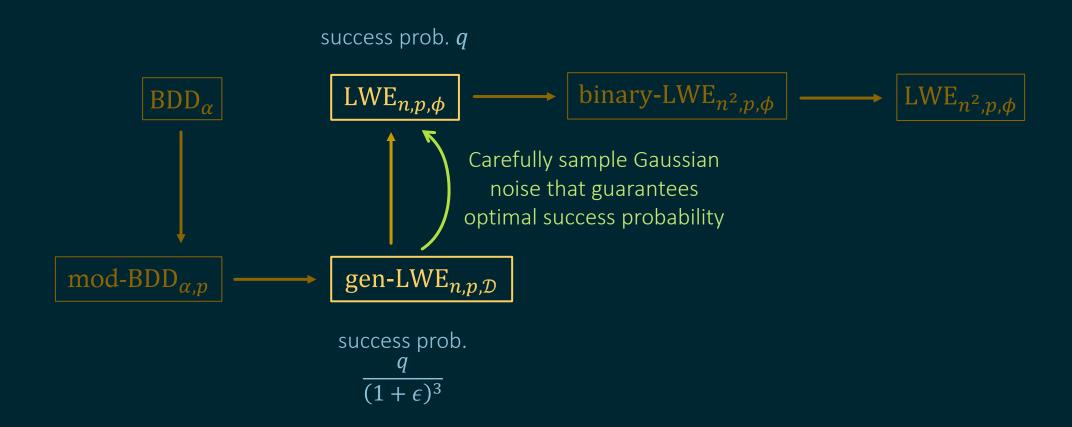
for dimension n, and modulus p = poly(n) with success probability $2^{-\frac{n}{\log n}}$.

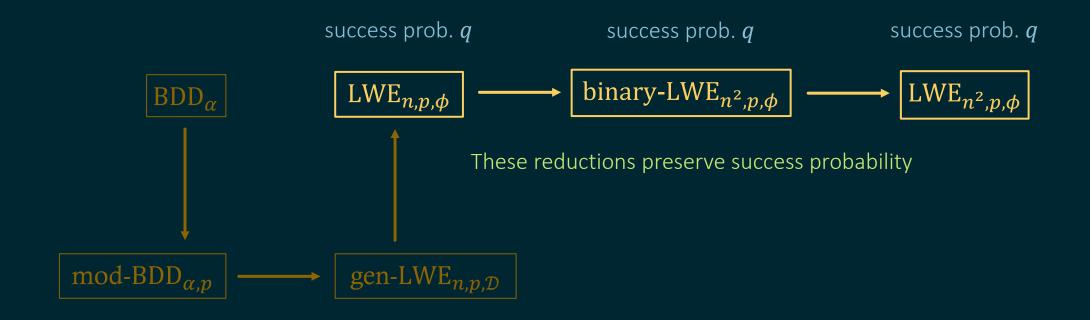
Our Reduction











Our Second Result

Theorem 2: (informal) If no algorithm can solve search-LWE $_{n,p}$ for polynomial modulus

with success probability lpha in expected polynomial time,

then no PPT algorithm can "solve" decision-LWE $_{n,p}$

with probability $\approx \alpha$.

Future Directions

- Establish a similar result for GapSVP → BDD (or prove impossibility).
- Reductions BDD → search-LWE and search-LWE → decision-LWE are disconnected, because expected polynomial-time is a fundamental part of the second reduction.
 Is a workaround possible?
- Use this alternative framework to study the complexity of other computational problems relevant to cryptography or learning.

Future Directions

- Establish a similar result for $GapSVP \rightarrow BDD$ (or prove impossibility).
- Reductions BDD → search-LWE and search-LWE → decision-LWE are disconnected, because expected polynomial-time is a fundamental part of the second reduction.
 Is a workaround possible?
- Use this alternative framework to study the complexity of other computational problems relevant to cryptography or learning.

Thank you! Questions?