Mean-Based Trace Reconstruction over Oblivious Synchronization Channels

Alexandra Veliche

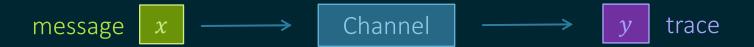
joint work with Mahdi Cheraghchi, Joseph Downs, and João Ribeiro

Trace Reconstruction

Problem: using as few i.i.d. traces y_1, \dots, y_t as possible, recover x with high probability.

三

Trace Reconstruction



Problem: using as few i.i.d. traces y_1, \dots, y_t as possible, recover x with high probability via algorithm A.

(worst-case) For any
$$\mathbf{x} \in \{-1,1\}^n$$
, $\mathbb{P}_{y_1,\dots,y_t}[\mathcal{A}(y_1,\dots,y_t)=\mathbf{x}] \approx 1$.

(average-case)
$$\mathbb{P}_{\substack{\mathbf{x} \leftarrow \{-1,1\}^n \\ y_1, \dots, y_t}} [\mathcal{A}(y_1, \dots, y_t) = \mathbf{x}] \approx 1.$$

Channel Models for Best Known Bounds

discrete memoryless synchronization

U

oblivious synchronization

deletion

geometric insertion-deletion

\equiv

Upper Bounds on Trace Number

Work	Channel Model	Sufficient Number of Traces
[Nazarov, Peres, 2017]	geometric insertion-deletion	$\exp\left(O\left(n^{1/3}\right)\right)$
[De, O'Donnell, Servedio, 2017]	deletion	$\exp\left(O\left(n^{1/3}\right)\right)$
[Chase, 2022]	deletion	$\exp\left(\widetilde{O}\left(n^{1/5}\right)\right)$
this work	oblivious synchronization	$\exp\left(O\left(n^{1/3}\right)\right)$
?	discrete memoryless synchronization	?

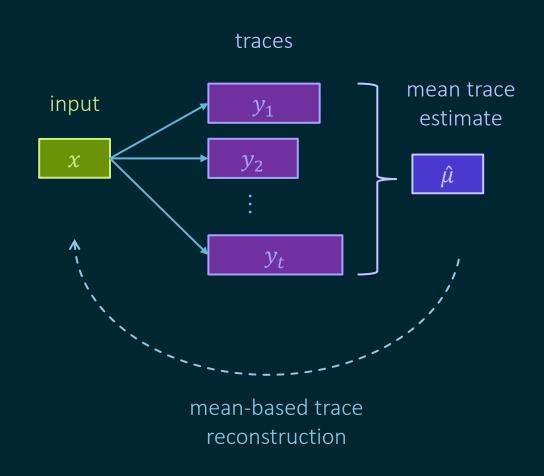
Upper Bounds on Trace Number

Work	Channel Model	Sufficient Number of Traces
[Nazarov, Peres, 2017]	geometric insertion-deletion	$\exp\left(O\left(n^{1/3}\right)\right)$
[De, O'Donnell, Servedio, 2017]	deletion	$\exp\left(O\left(n^{1/3}\right)\right)$
[Chase, 2022]	deletion	$\exp\left(\widetilde{O}(n^{1/5})\right)$
this work	oblivious synchronization	$\exp\left(O(n^{1/3})\right)$
?	discrete memoryless synchronization	?

These all use mean-based trace reconstruction!

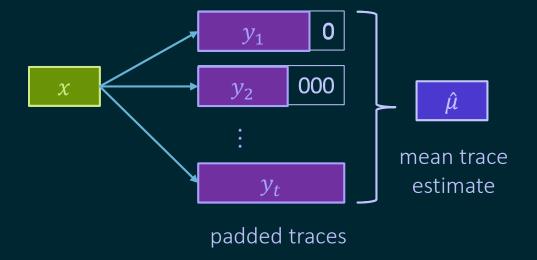
Ħ

Mean-Based Trace Reconstruction (MBTR)



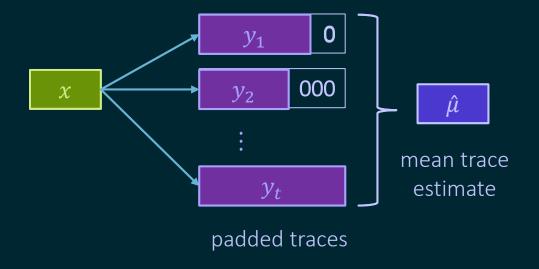
\equiv

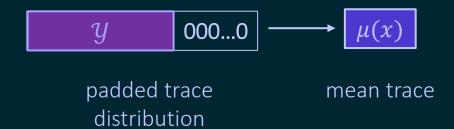
Mean-Based Trace Reconstruction



亖

Mean-Based Trace Reconstruction





\equiv

Mean-Based Trace Reconstruction

For $x \in \{-1,1\}^n$, there is a corresponding padded trace distribution: $y = (y_1, y_2, ...)||00...0$.

The *mean trace* of x is $\mu(x) = (\mathbb{E}[\mathcal{Y}_1], \mathbb{E}[\mathcal{Y}_2], \dots)$.

MBTR: Given t i.i.d. traces $y_1, \dots, y_t \leftarrow \mathcal{Y}$,

- 1. Compute the estimate $\hat{\mu}=(\widehat{\mu_1},\widehat{\mu_2},...)$ of $\mu(x)$, where $\widehat{\mu_i}\coloneqq \frac{1}{t}\sum_{j=1}^t y_j$.
- 2. Find $x^* \in \{-1,1\}^n$ that minimizes $\|\mu(x^*) \hat{\mu}\|_1$. Output x^* .

亖

Mean-Based Trace Reconstruction

For $x \in \{-1,1\}^n$, there is a corresponding padded trace distribution: $y = (y_1, y_2, \dots)||00 \dots 0$.

The *mean trace* of x is $\mu(x) = (\mathbb{E}[\mathcal{Y}_1], \mathbb{E}[\mathcal{Y}_2], \dots)$.

MBTR: Given t i.i.d. traces $y_1, ..., y_t \leftarrow \mathcal{Y}$,

- 1. Compute the estimate $\hat{\mu}=(\widehat{\mu_1},\widehat{\mu_2},...)$ of $\mu(x)$, where $\widehat{\mu_i}\coloneqq \frac{1}{t}\sum_{j=1}^t y_j$.
- 2. Find $x^* \in \{-1,1\}^n$ that minimizes $\|\mu(x^*) \hat{\mu}\|_1$. Output x^* .

For large enough t = t(n), we get $x^* = x$ with high probability (over randomness of traces).

三

Oblivious Synchronization Channel (OSC)

 $Ch_M \in \mathrm{OSC}$ characterized by a random variable M over $\mathbb{Z}_{\geq 0}$ where $\mathbb{P}[M>0]>0$.

M corresponds to a collection of randomized functions $\mathcal{F}_M = \{f : \{-1,1\} \to \{-1,1\}^M\}$.

Given input $x \in \{-1,1\}^n$, for each bit x_i :

Sample $m \leftarrow M$.

Sample $f: \{-1,1\} \rightarrow \{-1,1\}^m$ from \mathcal{F}_m .

Evaluate $f(x_i)$.

Output $f(x_1) || \dots || f(x_n)$.

Oblivious Synchronization Channel

 $Ch_M \in \mathrm{OSC}$ characterized by a random variable M over $\mathbb{Z}_{\geq 0}$ where $\mathbb{P}[M>0]>0$.

M corresponds to a collection of randomized functions $\mathcal{F}_M = \{f : \{-1,1\} \to \{-1,1\}^M\}$.

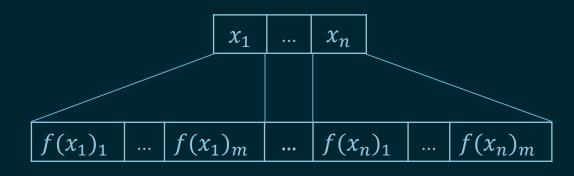
Given input $x \in \{-1,1\}^n$, for each bit x_i :

Sample $m \leftarrow M$.

Sample $f: \{-1,1\} \to \{-1,1\}^m$ from \mathcal{F}_m .

Evaluate $f(x_i)$.

Output $f(x_1) || ... || f(x_n)$.



Oblivious Synchronization Channel

For each x_i , the function f partitions the output space [m] into

Rep :=
$$\{j: f(-1)_j = -1, f(1)_j = 1\}$$
 replicated bits

Flip := $\{j: f(-1)_j = 1, f(1)_j = -1\}$ flipped bits

C₊ := $\{j: f(-1)_j = 1, f(1)_j = 1\}$ constant positive bits

C₋ := $\{j: f(-1)_j = -1, f(1)_j = -1\}$ constant negative bits

Oblivious Synchronization Channel

For each x_i , the function f partitions the output space [m] into

Rep :=
$$\{j: f(-1)_j = -1, f(1)_j = 1\}$$
 replicated bits

Flip := $\{j: f(-1)_j = 1, f(1)_j = -1\}$ flipped bits

C₊ := $\{j: f(-1)_j = 1, f(1)_j = 1\}$ constant positive bits

C₋ := $\{j: f(-1)_j = -1, f(1)_j = -1\}$ constant negative bits

$$\{2\} \cup \{3,7\} \cup \{1,6\} \cup \{4,5\} = [7]$$

Theorem: (informal) Under some mild conditions, $\exp\left(O(n^{1/3})\right)$ traces suffice for MBTR over the oblivious synchronization channel with high probability.

Theorem: (informal) Under some mild conditions, $\exp(O(n^{1/3}))$ traces suffice for MBTR over the oblivious synchronization channel with high probability.

- 1. *M* subexponential.
- 2. Rep and Flip must differ in a particular way.

Theorem: (informal) Under some mild conditions, $\exp\left(O\left(n^{1/3}\right)\right)$ traces suffice for MBTR over the oblivious synchronization channel with high probability.

- 1. *M* subexponential. Unknown if necessary. Open problem!
- $\overline{2}$. \overline{Rep} and \overline{Flip} must differ in a particular way. Necessary! Reconstruction impossible otherwise.

Theorem: Let $Ch_M \in OSC$, where M is subexponential. Define random variables W_R , W_F with p.m.f.s

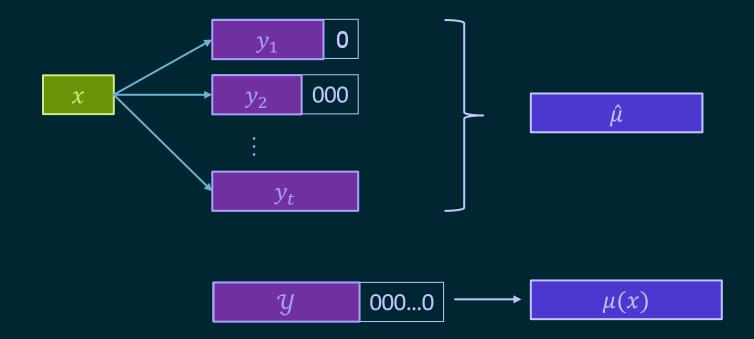
$$W_R(j) \coloneqq \frac{\mathbb{P}[j+1 \in Rep]}{\mathbb{E}[|Rep|]}, W_F(j) \coloneqq \frac{\mathbb{P}[j+1 \in Flip]}{\mathbb{E}[|Flip|]},$$

where $j \in \mathbb{Z}_{\geq 0}$, and p.g.f.s g_{W_R} , g_{W_F} . If $Rep = \emptyset$ (resp. $Flip = \emptyset$), define $g_{W_R} = 0$ (resp. $g_{W_F} = 0$).

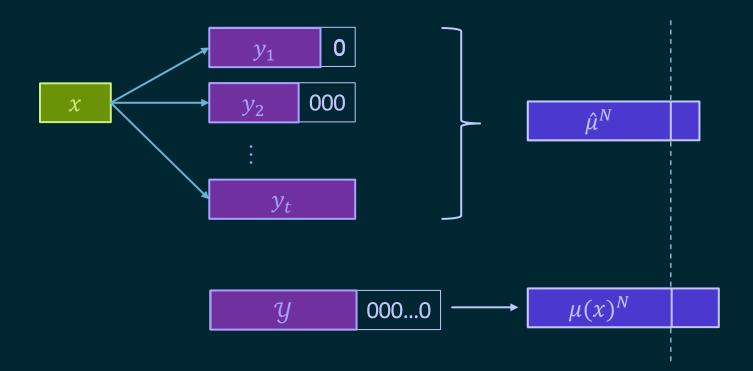
If $\mathbb{E}[|Rep|] \cdot g_{W_R}(z) \neq \mathbb{E}[|Flip|] \cdot g_{W_F}(z)$ for some $z \in \mathbb{C}$, then $\exp\left(O\left(n^{1/3}\right)\right)$ traces suffice for

MBTR over Ch_M with probability $1-e^{-\Omega(n)}$. Otherwise, MBTR is impossible.

Let x be the input message. Suppose that we are given $t = \exp\left(O\left(n^{1/3}\right)\right)$ traces.



Let x be the input message. Suppose that we are given $t = \exp\left(O\left(n^{1/3}\right)\right)$ traces. Consider truncation of mean trace $\mu(x)^N$ and its estimate $\hat{\mu}^N$, for some $N \in \mathbb{Z}_+$.



Naïve recovery of x from $\hat{\mu}$:

Compute $\mu(x')^N$ for all possible x' and output $\operatorname{argmin}_{x'}\{\|\hat{\mu}^N - \mu(x')^N\|_1\}$.

Naïve recovery of x from $\hat{\mu}$:

Compute $\mu(x')^N$ for all possible x' and output $\mathop{\rm argmin}_{x'}\{\|\hat{\mu}^N - \mu(x')^N\|_1\}$.

Claim: For any $x' \neq x$, $\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \frac{3}{4} \exp\left(-Cn^{1/3}\right)$ with probability $1 - \exp\left(-\Omega(n)\right)$.

Naïve recovery of x from $\hat{\mu}$:

Compute $\mu(x')^N$ for all possible x' and output $\operatorname{argmin}_{x'}\{\|\hat{\mu}^N - \mu(x')^N\|_1\}$.

Claim: For any
$$x' \neq x$$
, $\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \frac{3}{4} \exp\left(-Cn^{1/3}\right)$ with probability $1 - \exp\left(-\Omega(n)\right)$.
$$\delta(n)$$

Claim: For any $x' \neq x$, $\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \frac{3}{4}\delta(n)$ with probability $1 - \exp(-\Omega(n))$.

$$\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \|\hat{\mu}^N - \mu(x)^N\|_1 - \|\mu(x)^N - \mu(x')^N\|_1 \ge \delta(n) - \frac{1}{4}\delta(n) = \frac{3}{4}\delta(n).$$

Claim: For any $x' \neq x$, $\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \frac{3}{4}\delta(n)$ with probability $1 - \exp(-\Omega(n))$.

$$\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \|\hat{\mu}^N - \mu(x)^N\|_1 - \|\mu(x)^N - \mu(x')^N\|_1 \ge \delta(n) - \frac{1}{4}\delta(n) = \frac{3}{4}\delta(n).$$

Lemma 1: If x is the input and t traces are given, then

$$\mathbb{P}\left[\|\hat{\mu}^N - \mu(x)^N\|_1 \le \frac{1}{4}\delta(n)\right] \ge 1 - \exp(-\Omega(n))$$

Claim: For any $x' \neq x$, $\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \frac{3}{4}\delta(n)$ with probability $1 - \exp(-\Omega(n))$.

$$\|\hat{\mu}^N - \mu(x')^N\|_1 \ge \|\hat{\mu}^N - \mu(x)^N\|_1 - \|\mu(x)^N - \mu(x')^N\|_1 \ge \delta(n) - \frac{1}{4}\delta(n) = \frac{3}{4}\delta(n).$$

Lemma 1: If x is the input and t traces are given, then

$$\mathbb{P}\left[\|\widehat{\mu}^N - \mu(x)^N\|_1 \le \frac{1}{4}\delta(n)\right] \ge 1 - \exp(-\Omega(n))$$

Lemma 2: There exists a constant C > 0 such that for n large enough, N = O(n), for any $x \neq x'$,

$$\|\mu(x)^N - \mu(x')^N\|_1 \ge \delta(n).$$

Lemma 1: If x is the input and t traces are given, then

$$\mathbb{P}\left[\|\hat{\mu}^{N} - \mu(x)^{N}\|_{1} \le \frac{1}{4} \exp(-Cn^{1/3})\right] \ge 1 - \exp(-\Omega(n)).$$

Lemma 2: There exists a constant C > 0 such that for n large enough, N = O(n), for any $x \neq x'$,

$$\|\mu(x)^N - \mu(x')^N\|_1 \ge \exp(-Cn^{1/3}).$$

Lemma 1: If x is the input and t traces are given, then

$$\mathbb{P}\left[\|\hat{\mu}^{N} - \mu(x)^{N}\|_{1} \le \frac{1}{4} \exp(-Cn^{1/3})\right] \ge 1 - \exp(-\Omega(n)).$$

Chernoff bound + union bound

Lemma 2: There exists a constant C > 0 such that for n large enough, N = O(n), for any $x \neq x'$,

$$\|\mu(x)^N - \mu(x')^N\|_1 \ge \exp(-Cn^{1/3}).$$

Lemma 1: If x is the input and t traces are given, then

$$\mathbb{P}\left[\|\hat{\mu}^{N} - \mu(x)^{N}\|_{1} \le \frac{1}{4} \exp(-Cn^{1/3})\right] \ge 1 - \exp(-\Omega(n)).$$

Chernoff bound + union bound

Lemma 2: There exists a constant C > 0 such that for n large enough, N = O(n), for any $x \neq x'$,

$$\|\mu(x)^N - \mu(x')^N\|_1 \ge \exp(-Cn^{1/3}).$$

Complex analysis! For any $z \in \mathbb{C}$, $|z| \ge 1$,

$$\|\mu(x)^{N} - \mu(x')^{N}\|_{1} \ge |z|^{-N} \left(|\overline{P_{x}}(z) - \overline{P_{x'}}(z)| - \sum_{i=N+1}^{\infty} |\mu(x)_{i} - \mu(x')_{i}| \cdot |z|^{i-1} \right).$$

▤

Complex Analytic Techniques

1. Number of traces required to accurately estimate $\hat{\mu}$ is determined by bounding

$$\min_{\substack{x \neq x' \\ x, x' \in \{-1,1\}^n}} \{ \|\mu(x) - \mu(x')\|_1 \}.$$

\equiv

Complex Analytic Techniques

1. Number of traces required to accurately estimate $\hat{\mu}$ is determined by bounding

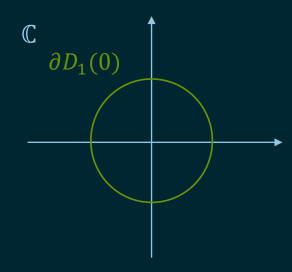
$$\min_{\substack{x \neq x' \\ x,x' \in \{-1,1\}^n}} \{ \|\mu(x) - \mu(x')\|_1 \}.$$

$$x \longrightarrow P_{x}(z) = \sum_{i=1}^{n} x_{i} z^{i-1} \in \mathbb{C}[z]$$

$$\mu(x)$$
 -----> $\overline{P_x}(z)$ = $\sum_{i=1}^{\infty} \mu(x)_i z^{i-1}$ mean trace power series

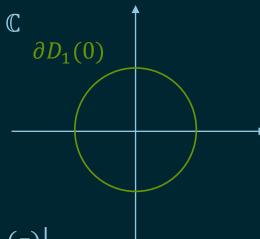
Complex Analytic Techniques

2.
$$\|\mu(x) - \mu(x')\|_1 \ge \max_{z \in \partial D_1(0)} \{|\overline{P_x}(z) - \overline{P_{x'}}(z)|\}$$



Complex Analytic Techniques

2.
$$\|\mu(x) - \mu(x')\|_1 \ge \max_{z \in \partial D_1(0)} \{|\overline{P_x}(z) - \overline{P_{x'}}(z)|\}$$



change of variable:

$$|\overline{P_x}(z) - \overline{P_{x'}}(z)| = |P_x(z) - P_{x'}(z)| \cdot \left| \mathbb{E}[|Rep|] \cdot g_{W_R}(z) - \mathbb{E}[|Flip|] \cdot g_{W_F}(z) \right|$$

for any x, x', and z in the disk of convergence of all g power series.

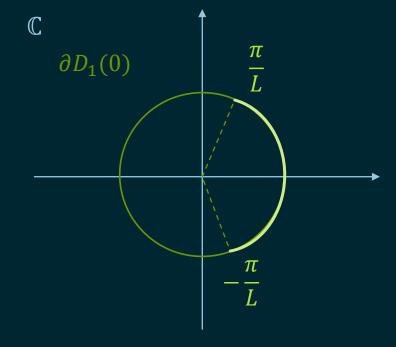
Complex Analytic Techniques

3. For any $x \neq x'$, $P_x(z) - P_{x'}(z) = |2A(z)|$ for some Littlewood polynomial

$$A(z) = \sum_{i=1}^{n} a_i \cdot z^i, a_i \in \{-1,0,1\} \qquad \mathbb{C}$$

$$\frac{\partial D_1(0)}{\partial D_1(0)}$$

and $\max_{z \in arc} \{|A(z)|\} \ge e^{-cL}$ for large L.



Claim: If $\mathbb{E}[|Rep|] \cdot g_{W_R}(z) = \mathbb{E}[|Flip|] \cdot g_{W_F}(z)$, then MBTR is impossible.

Claim: If $\mathbb{E}[|Rep|] \cdot g_{W_R}(z) = \mathbb{E}[|Flip|] \cdot g_{W_F}(z)$, then MBTR is impossible.

Let $x, x' \in \{-1,1\}^n$. By assumption, for any z

$$|\overline{P_{x}}(z) - \overline{P_{x'}}(z)| = |P_{x}(z) - P_{x'}(z)| \cdot |\mathbb{E}[|Rep|] \cdot g_{W_{R}}(z) - \mathbb{E}[|Flip|] \cdot g_{W_{F}}(z)| = 0.$$

Hence $\overline{P_x}(z) - \overline{P_{x'}}(z) = 0$ has all coefficients 0, so $\mu(x_i) = \mu(x_i')$ for all i.

Thus, $\mu(x) = \mu(x')$ for all x, x', so mean-based trace reconstruction is impossible.

Claim: $\exists \ Ch_M \in \text{OSC}$ where $\mathbb{E}[|Rep|] \cdot g_{W_R}(z) = \mathbb{E}[|Flip|] \cdot g_{W_F}(z)$.

Claim: $\exists \ Ch_M \in OSC \ \text{where} \ \mathbb{E}[|Rep|] \cdot g_{W_R}(z) = \mathbb{E}[|Flip|] \cdot g_{W_F}(z).$

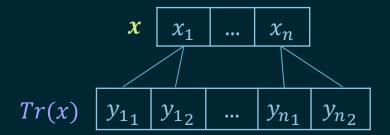
M=2. Let $C_-=\emptyset$ and Rep, Flip, C_+ be jointly distributed among 3 equally likely outcomes:

	Outcome 1	Outcome 2	Outcome 3
	1 2	1 2	1 2
-1 ↔	-1 -1	1 1	
1 ↔	1 1	-1 1	1 -1

Regardless of input, each output bit has expected value $\frac{1}{3}$. So MBTR is impossible!

(cont.) But trace reconstruction is easy!

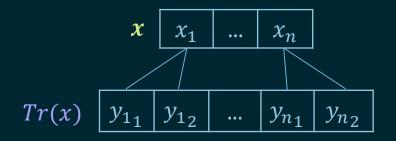
 $1 \mapsto \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ with probability 0



(cont.) But trace reconstruction is easy!

$$-1 \mapsto \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 with probability $\frac{1}{3}$

$$1 \mapsto \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 with probability 0



Use this to distinguish any $x \neq x'$:

W.l.o.g. assume $x_i = -1$ and $x_i' = 1$ for some i. Consider Tr(x), Tr(x') traces of x, x'.

$$\mathbb{P}[Tr(x)_{2i-1} = Tr(x)_{2i} = -1] = \frac{1}{3}$$

$$\mathbb{P}[Tr(x')_{2i-1} = Tr(x')_{2i} = -1] = 0$$

(cont.) Algorithm:

Given t traces of input $z \in \{-1,1\}^n$, reconstruct a guess z^* :

- 1. If any trace has $Tr(z)_{2i-1}=Tr(z)_{2i}=-1$, set $z_i^*\coloneqq -1$. Else, set $z_i^*\coloneqq 1$.
- 2. Output z^* .

(cont.) Algorithm:

Given t traces of input $z \in \{-1,1\}^n$, reconstruct a guess z^* :

- 1. If any trace has $Tr(z)_{2i-1} = Tr(z)_{2i} = -1$, set $z_i^* \coloneqq -1$. Else, set $z_i^* \coloneqq 1$.
- 2. Output z^* .

Correctness: $\mathbb{P}[z^* \neq z] \leq \sum_{i=1}^n \mathbb{P}[z_i^* \neq z_i] = n\left(\frac{2}{3}\right)^t \leq \delta$ small if we take $t = O\left(\log\left(\frac{n}{\delta}\right)\right)$.

三

Future Work

- ullet Remove subexponential condition or prove it is necessary for MBTR with $\exp\left(O\left(n^{1/3}
 ight)
 ight)$ traces.
- $ightharpoonup \exp\left(\Omega(n^{1/3})\right)$ traces is required for deletion channel, so our upper bound is tight.
- Generalize this result further to all discrete memoryless synchronization channels.
- [Chase, 2022] Best known upper bound for deletion channel, analyses appearance of short sequences instead of bits. Extend this technique to oblivious synchronization channel?

Future Work

- ullet Remove subexponential condition or prove it is necessary for MBTR with $\exp\left(O\left(n^{1/3}
 ight)
 ight)$ traces.
- $\exp\left(\Omega(n^{1/3})\right)$ traces is required for deletion channel, so our upper bound is tight.
- Generalize this result further to all discrete memoryless synchronization channels.
- [Chase, 2022] Best known upper bound for deletion channel, analyses appearance of short sequences instead of bits. Extend this technique to oblivious synchronization channel?

Thank you! Questions?