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Trace Reconstruction

message - Channel y | trace

Problem: using as few i.i.d. traces y4, ..., ¥ as possible, recover x with high probability.



Trace Reconstruction

message - Channel y | trace

Problem: using as few i.i.d. traces y4, ..., ¥; as possible, recover x with high probability via algorithm A.

(worst-case) Foranyx € {—1,1}", P, . [A(1,....y:) =x] = 1.

(average-case) Py g ynlAy, ., ¥e) = x] = 1.
Y12Vt
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Presentation Notes
Note: use +/- 1 bits for easier analysis


Channel Models for Best Known Bounds

discrete memoryless synchronization

oblivious synchronization

geometric

deletion ) . .
insertion-deletion


Presenter Notes
Presentation Notes
Geometric insertion-deletion channel = prepends a geometric number of independent, uniformly random symbols to each input symbol and then deletes it with a given probability
Discrete memoryless synchronization channel = behaviour can depend on input, unlike OSC


Upper Bounds on Trace Number

Work Channel Model Sufficient Number of Traces
[Nazarov, Peres, 2017] geometric insertion-deletion exp (O(n1/3))
[De, O’Donnell, Servedio, 2017] deletion exp (O(n1/3))
[Chase, 2022] deletion exp (O 1/5))
this work oblivious synchronization exp (O(n1/3))

discrete memoryless

?
synchronization
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Upper Bounds on Trace Number

Work Channel Model Sufficient Number of Traces
[Nazarov, Peres, 2017] geometric insertion-deletion exp (O(n1/3))
[De, O’'Donnell, Servedio, 2017] deletion exp (O(n1/3))
[Chaca 202721 Aalation e Blal/5))
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this work oblivious synchronization exp (O(n1/3))
5 discrete memoryless 5

synchronization

These all use mean-based trace reconstruction!
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Mean-Based Trace Reconstruction (MBTR)
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Mean-Based Trace Reconstruction
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mean trace
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padded traces


Presenter Notes
Presentation Notes
MBTR: reconstruction only requires expected value of each trace coordinate


Mean-Based Trace Reconstruction

V1 0
000 "
Y2 L P
mean trace
Vi estimate
padded traces
Y 000..0 | /| u(x)
padded trace mean trace

distribution
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Mean-Based Trace Reconstruction

For x € {—1,1}", there is a corresponding padded trace distribution: Y = (Y, Y, ...)||00 ... 0.
The mean trace of x is u(x) = (E[Y,], E|Y,], ...).

MBTR: Given ti.i.d. traces yq, ..., y; < U,

1. Compute the estimate fi = (fig, fiy, ... ) of u(x), where fi; = % f-zlyj :

2. Findx* € {—1,1}" that minimizes ||u(x*) — fi||;. Output x™.
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Mean-Based Trace Reconstruction

For x € {—1,1}", there is a corresponding padded trace distribution: Y = (Y, Y, ...)||00 ... 0.
The mean trace of x is u(x) = (E[Y,], E|Y,], ...).
MBTR: Giventi.i.d.traces yq, ...,y < U,

1. Compute the estimate fi = (fig, fiy, ... ) of u(x), where fi; = % §'=1Yj :

2. Findx* € {—1,1}" that minimizes ||u(x*) — fi||;. Output x™.

For large enough t = t(n), we get x* = x with high probability (over randomness of traces).
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Presentation Notes
MBTR: reconstruction only requires expected value of each trace coordinate


Oblivious Synchronization Channel (OSC)

Ch,; € OSC characterized by a random variable M over Z-, where P[M > 0] > 0.
M corresponds to a collection of randomized functions Fy, = {f:{—1,1} - {—1,1}"}.
Given input x € {—1,1}", for each bit x;:

Sample m « M.

Sample f: {—1,1} - {—1,1}" from F,,.

Evaluate f(x;).

Output f(xp)|| ... [If Cxn).
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Presentation Notes
OSC is a generalization of all prior channels considered in upper bounds for MBTR.
Oblivious = independent of input
Synchronization = errors that affect synchronization of traces, ex: deletions, insertions
Probability that M is non-zero is non-zero ensures the possibility of trace reconstruction.


Oblivious Synchronization Channel

Ch,; € OSC characterized by a random variable M over Z-, where P[M > 0]

> 0.

M corresponds to a collection of randomized functions Fy, = {f:{—1,1} - {—1,1}"}.

Given input x € {—1,1}", for each bit x;:
Sample m « M.
Sample f: {—1,1} - {—1,1}" from F,,.
Evaluate f(x;).

Output f(xp)|| ... [If Cxn).
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OSC is a generalization of all prior channels considered in upper bounds for MBTR.
Oblivious = independent of input
Synchronization = errors that affect synchronization of traces, ex: deletions, insertions
Probability that M is non-zero is non-zero ensures the possibility of trace reconstruction.


Oblivious Synchronization Channel

For each x;, the function f partitions the output space [m] into
Rep := {] f(-1D);=-1,f(); = 1} replicated bits
Flip := {] f(-1D);=1,fQ); = —1} flipped bits
T. &= {] f(-D;=1,f1); = 1} constant positive bits
(= {] f(-1D);=-1,f(1); = —1} constant negative bits



Oblivious Synchronization Channel

For each x;, the function f partitions the output space [m] into

Rep = {j: f(-1); = =1, f(1); = 1}
Flip:={j : f(-1); = 1,f(1); = 1}
C, ={:fC1;=1,£(1); = 1)

replicated bits

flipped bits

constant positive bits

(= {] f(-1D);=-1,f(1); = —1} constant negative bits

Ex: (m=7)

F(-1) =
) =

%_

141 1
141 §-1

{2} u{3,7} u{1,6} U {45} =[7]



Main Results

Theorem: (informal) Under some mild conditions, exp (O(n1/3)) traces suffice for MBTR over the

oblivious synchronization channel with high probability.
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Subexponential condition is reasonable, as this includes many common distributions (ex: geometric, Poisson, finite-support)
Ensures that E[|Rep|], E[|Flip|] < \infinity (key in proof)


Main Results

Theorem: (informal) Under some mild conditions, exp (0(n1/3)) traces suffice for MBTR over the

oblivious synchronization channel with high probability.

1. M subexponential.

2.  Rep and Flip must differ in a particular way.
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Ensures that E[|Rep|], E[|Flip|] < \infinity (key in proof)


Main Results

Theorem: (informal) Under some mild conditions, exp (0(n1/3)) traces suffice for MBTR over the

oblivious synchronization channel with high probability.

1. M subexponential. Unknown if necessary. Open problem!

2.  Rep and Flip must differ in a particular way. Necessary! Reconstruction impossible otherwise.


Presenter Notes
Presentation Notes
Subexponential condition is reasonable, as this includes many common distributions (ex: geometric, Poisson, finite-support)
Ensures that E[|Rep|], E[|Flip|] < \infinity (key in proof)


Main Results

Theorem: Let Ch;; € OSC, where M is subexponential. Define random variables Wg, W with p.m.f.s

P[j + 1 € Rep] -~ P[j+1€Flip]
ElRepll " VFY) = EQFpN

Wr(j) =
where j € Zs(, and p.g.f.s gw,, gw,- If Rep = @ (resp. Flip = @), define gy, = 0 (resp. gy, = 0).

If E[|Repl] - gw,(2) # E[|Flip|] - gw,(2) for some z € C, then exp (0(n1/3)) traces suffice for

MBTR over Ch,; with probability 1 — e~ Otherwise, MBTR is impossible.



Proof Sketch

Let x be the input message. Suppose that we are given t = exp (0(n1/3)) traces.

V1 0

v, | 000

Yt

Y 000..0 | — u(x)
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- Traces, and hence mean trace, are padded with infinite zeros, so we consider truncations.


Proof Sketch

Let x be the input message. Suppose that we are given t = exp (0(n1/3)) traces.

Consider truncation of mean trace u(x)" and its estimate iV, for some N € Z,.

v, | 000

Yt

Y 000..0 | — | p)"
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- Traces, and hence mean trace, are padded with infinite zeros, so we consider truncations.


Proof Sketch

Naive recovery of x from [i:

Compute u(x")" for all possible x” and output argmin,, {||@" — u(x")¥||.}.


Presenter Notes
Presentation Notes
Note: we do not care about efficiency, only correctness


Proof Sketch

Naive recovery of x from [i:

Compute u(x")" for all possible x” and output argmin,, {||@" — u(x")¥||.}.

Claim: Forany x" # x, ||aY — u(x")N||; = %exp(—Cnl/?’) with probability 1 — exp(—Q(n)).



Proof Sketch

Naive recovery of x from [i:

Compute u(x")" for all possible x” and output argmin,, {||@" — u(x")¥||.}.

Claim: Forany x" # x, ||aY — u(x")N||; = %exp(—Cnl/?’) with probability 1 — exp(—Q(n)).
\ J

|
5(n)




Proof Sketch

Claim: For any x’ # x, || — u(x")V||; = %5(71) with probability 1 — exp(—Q(n)).

1 !
12Y = 1Dl 2 NAY = GOl = k@)™ = p(eD) 2 6() = 78(n) = - 6(n).
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Presentation Notes
- Traces, and hence mean trace, are padded with infinite zeros, so we consider truncations.


Proof Sketch

Claim: For any x’ # x, || — u(x")V||; = %5(71) with probability 1 — exp(—Q(n)).

1 3
AN = uCHM Ny = 1Y = @Vl = e = uxHNly = 8(n) - 7 5() =28(n).
Lemma 1: If x is the input and t traces are given, then

1
P| 112" — uCoOMl< 7800)| 2 1 - exp(-0@m)
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- Traces, and hence mean trace, are padded with infinite zeros, so we consider truncations.


Proof Sketch

Claim: For any x’ # x, || — u(x")V||; = %5(71) with probability 1 — exp(—Q(n)).

1 3
AN = uCHM Ny = 1Y = @Vl = e = uxHNly = 8(n) - 7 5() =28(n).
Lemma 1: If x is the input and t traces are given, then
|
P| 112" — uCoOMl< 7800)| 2 1 - exp(-0@m)

Lemma 2: There exists a constant C > 0 such that for n large enough, N = 0(n), for any x # x’,

e — uGHV]l, = 8(n).
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- Traces, and hence mean trace, are padded with infinite zeros, so we consider truncations.


Proof Sketch

Lemma 1: If x is the input and t traces are given, then

P l AN — (N < iexp(—CnlB)] > 1—exp(—Q(n)).

Lemma 2: There exists a constant C > 0 such that for n large enough, N = 0(n), for any x # x/,

lGON — u(xHV ||, = exp(—Cn'/3).
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Proof Sketch

Lemma 1: If x is the input and t traces are given, then
A 1
P l I1aY — uON||, < Zexp(—Cn1/3)] > 1—exp(—Q(n)).
Chernoff bound + union bound

Lemma 2: There exists a constant C > 0 such that for n large enough, N = 0(n), for any x # x/,

lGON — u(xHV ||, = exp(—Cn'/3).
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Proof Sketch

Lemma 1: If x is the input and t traces are given, then
P l I1aY — uON||, < iexp(—CnlB)] > 1—exp(—Q(n)).
Chernoff bound + union bound
Lemma 2: There exists a constant C > 0 such that for n large enough, N = 0(n), for any x # x’,
luGON = uGHV ||, = exp(=Cni?).

Complex analysis! Forany z € C, |z| = 1,

I GON = p(xHV My = |27 (lﬁx(z) — Pu(2)| — z () — plx');] - IZI‘”)-

I=N+1


Presenter Notes
Presentation Notes
-


Complex Analytic Techniques

1. Number of traces required to accurately estimate [i is determined by bounding

min  {lluCo) — Gl

xx'e{—-1,1}1
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3 main components in proof from complex analysis
Bounding number of traces reduces to bounding the distance between the polynomials of any distinct pair of messages. WHY???


Complex Analytic Techniques

1. Number of traces required to accurately estimate [i is determined by bounding

min  {|lu(x) — p(x)Il1}-
XFX
xx'e{—-1,1}1

n
Exlzl 1 e C[z]

i=1

. - > | P.(2) — Z u(x);zi=1 mean trace power series
i=1
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3 main components in proof from complex analysis
Bounding number of traces reduces to bounding the distance between the polynomials of any distinct pair of messages.


2.

Complex Analytic Techniques

C

l1CG) — p(xDNly = max {|P(2) — Py (2)1} dD;(0)

ZE@Dl (O)

-

N

NI



Presenter Notes
Presentation Notes
3 main components in proof from complex analysis
Bounding number of traces reduces to bounding the distance between the polynomials of any distinct pair of messages.


Complex Analytic Techniques

C

2. |lux) —uxH|ly = max {|P.(z) — P, (2)|} 9D, (0)

ZEGDl (O)

-

change of variable:
|Pe(2) = P (2| = |P(2) = P (2)] - |E[IRepl] - gw, (2) — ElIFlipl] - gw,.(2)]

for any x, x, and z in the disk of convergence of all g power series.

N

NI
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3 main components in proof from complex analysis
Bounding number of traces reduces to bounding the distance between the polynomials of any distinct pair of messages.


3.

Complex Analytic Techniques

Forany x # x', P.(z) — P,(z) = |2A(z)| for some Littlewood polynomial
n
A(2) = ) a;-z',a; € {-1,0,1} C
=

and max{|A(2)|} = e~ for large L.
Zearc




Proof Sketch

Claim: If E[|Repl] - gw,(z) = E[|Flip|] - gw,(2), then MBTR is impossible.
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Proof Sketch

Claim: If E[|Repl] - gw,(z) = E[|Flip|] - gw,(2), then MBTR is impossible.
Let x, x" € {—1,1}". By assumption, for any z

|P(2) = Py (2)| = |Pe(2) = P (2)| - |E[IRepl] - gwy (2) — E[IFip|] - gw, (2)| = 0.
Hence P,(z) — P,s(z) = 0 has all coefficients 0, so u(x;) = u(x;) for all i.

Thus, u(x) = u(x") for all x, x’, so mean-based trace reconstruction is impossible.


Presenter Notes
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Example

Claim: 3 Chy, € OSC where E[|Rep]] - gw,(z) = E[|Flip|] - gw,(2).


Presenter Notes
Presentation Notes
-The condition is non-trivial, i.e. there exist OSC that do not satisfy the assumption.


Example

Claim: 3 Chy, € OSC where E[|Rep]] - gw,(z) = E[|Flip|] - gw,(2).

M = 2.let C_ = @ and Rep, Flip, C,. be jointly distributed among 3 equally likely outcomes:

Qutcome 1 Qutcome 2 QOutcome 3
1] 2 1|2 1|2
-1 11 -1 1 1 1 1
1 1 1 111 11]-1

Regardless of input, each output bit has expected value g So MBTR is impossible!



Example

(cont.) But trace reconstruction is easy!

with probability %

with probability O
Tr(x)

yll

ylz




Example

(cont.) But trace reconstruction is easy!

1 |1 -121-11] with probability% x| x;
1- |-1]-1| with probability O ﬂ
Tr(x) | Y11 | Y1,
Use this to distinguish any x # x':
W.l.o.g. assume x; = —1 and x; = 1 for some i. Consider Tr(x), Tr(x") traces of x, x'.

P[Tr(x)zi—1 = Tr(x); = —1] = %

P[Tr(x)zi—1 = Tr(x)z; = —1] =0



Presenter Notes
Presentation Notes
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Example

(cont.) Algorithm:

Given t traces of input z € {—1,1}", reconstruct a guess z*:

1. Ifanytrace hasTr(z),;_1 = Tr(z),; = —1,set z; == —1.
Else, set z;" == 1.

2. QOutput z™.



Example

(cont.) Algorithm:

Given t traces of input z € {—1,1}", reconstruct a guess z*:

1. Ifanytrace hasTr(z),;_1 = Tr(z),; = —1,set z; == —1.
Else, set z;" == 1.

2. QOutput z™.

t
Correctness: P[z* #z| < Y Plz; #z]=n (g) < 6§ small if we take t = O (log (g))



Future Work

Remove subexponential condition or prove it is necessary for MBTR with exp (0(n1/3)) traces.

exp (Q(n1/3)) traces is required for deletion channel, so our upper bound is tight.
Generalize this result further to all discrete memoryless synchronization channels.

[Chase, 2022] Best known upper bound for deletion channel, analyses appearance of short

seqguences instead of bits. Extend this technique to oblivious synchronization channel?
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Future Work

Remove subexponential condition or prove it is necessary for MBTR with exp (0(n1/3)) traces.

exp (Q(n1/3)) traces is required for deletion channel, so our upper bound is tight.
Generalize this result further to all discrete memoryless synchronization channels.

[Chase, 2022] Best known upper bound for deletion channel, analyses appearance of short

seqguences instead of bits. Extend this technique to oblivious synchronization channel?

Thank you! Questions?
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[Chase, 2022] non-mean-based trace reconstruction
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