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Generalized Reed-Solomon Codes

GRS Code: n blocklength, [, finite field of size ¢ = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS, k(a, t) = {(t1- flay), o, ty - fan)): f € Fglx], deg(f) < k} < Iy
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Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS,k (a,t) = {(t1 - f(ag), ..., t, ~f(o:n)) : f € Fglx], deg(f) < k} c 7.

f(ay) b | — = | a
f(a3) by | —> |

f(x) =coy+cyx+ -+ cpqxk?t E € GRS
f(an) tn . Cn




List-Decoding Problem

Fq

C code




List-Decoding Problem

C code

y received word



List-Decoding Problem

C code

find all codewords within distance § of y



Measuring Distance

How is distance measured?




Hamming Distance

q
¢ Yy = (yliyZJ "'iyq)
o ///

X = (xl, X2, ...,xq)




ILee Distance

IRTL

£, norm




Euclidean Distance

Rn

£, norm




£, (Semi)Metric

£,(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,) € R,

Ixll, = (xP + -+ 2B) 7.
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£, (Semi)Metric

£p(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,,) € R",

Ixll, = (P + -+ x2)"'.

£ (Semi)Metric: (on RZ) Foranyp >0, x = (x4, ..., X,,) € R},

Ixllp = % 1lp.

Decoding distance: & = d/n/P.
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Our Results

Theorem: (informal) There is an efficient algorithm that list-decodes GRS codes over a prime field

from continuous error in the £, (semi)metric forany 0 < p < 2

up to arbitrarily large (relative) distance & > 0 for corresponding small enough rates.



Prior Algorithms

Rel. Decoding Distance

Work Metric Codes Decoder Type | Error Type (5)
[Guruswami-Sudan, . ) )
Hamming GRS list discrete <1—-+VR
1999]
[Mook-Peikert, . . : : .
2022] Euclidean (£,) | prime-field GRS list continuous < \/(1 —R)/2
[Roth-Siegel, subclass of GRS, : . _
1994] Lee (£4) ACH unique discrete <1—R
[Wu-Kuijper-Udaya, Lee (¢;) prime-field GRS list discrete >0

2003]




Prior Algorithms

Rel. Decoding Distance

Work Metric Codes Decoder Type | Error Type (5)
[Guruswami-Sudan, . ) )
Hamming GRS list discrete <1—-+VR
1999]
[Mook-Peikert, . . : : .
2022] Euclidean (£,) | prime-field GRS list continuous < \/(1 —R)/2
[Roth-Siegel, subclass of GRS, : . _
1994] Lee (£4) ACH unique discrete <1—R
[Wu-Kuijper-Udaya, Lee (¢;) prime-field GRS list discrete >0
2003]
[Peikert-V.H., any £, S . : ~ . 1/p
2025] 0<p<2 prime-field GRS list continuous | < 1/(R - c,(ep)™/P)




Comparison to Prior Algorithms

*
rate R™

IMP22]

distance § =

Rate-distance trade-off for ¢,

SR
=)



Comparison to Prior Algorithms

rate R*

[RS94]

distance § = g

Rate-distance trade-off for £



List-Decoding Algorithm

received word
n
y €ERy

> list of close codewords
C1,C2, ..., C €EC



Soft-Decision Decoding Algorithm

weight vector >

= (Wll ey Wi, ---;Wn) S [O’l]qn

> |ist of close codewords
1,62, ..., Ct EC




Soft-Decision Decoding Algorithm

weight vector

W = (Wl) ey Wi, ---;Wn) S [O’l]qn

AN

wi(x) | wi()| o [ wi(xg)

w; (x) specifies the “likelihood” that

x was the i-th transmitted symbol

> |ist of close codewords
1,62, ..., Ct EC



Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes C € [y,

. . . =
dimension k, adjusted rate R* = — with

Input:  weight vector W = (wy, ..., w,) € [0,1]9",

Output: list of all codewords ¢ € C that are “closely correlated” with W

corr(W, ¢) = VR*.



Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes C € Fy,

. . . . k-1
dimension k, adjusted rate R* = — with

Input:  weight vector W = (wy, ..., w,,) € [0,1]9"

tolerance parametert > 0

Output: list of all codewords ¢ € C that are “closely correlated” with W

corr(W, c) := (W [\]/_ >VR* + 1.

running in poly (n q, ”1 ”) time.



Our List-decoding Algorithm

received word
n
y € Ry

list of close codewords
C1,Cp, ..., Cp €EC
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Transforming into Weights

received word y = |1

Vo | e

Yn

n
€ R!

transmitted codeword must have coordinates in F, = Z,

Rq

Lq



Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY
]Rq Zq
[y
y
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Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

i-th weight vector

[Mook-Peikert, 2022] : R, ZLg

w;=[0|0|w;|wj|l0]|0

Vi



Transforming into Weights

received word y =

[Mook-Peikert, 2022] :

R

q

V1

Y2

Yn

Yi

€ Ry

weight vector

wr=|0|0|w|wilo]0]|O
w, = |ws|0]0[0[0]0|w,
W, =|0/0[0]0|w,| w0




Transforming into Weights

received word y = |1

VYo | o

Yn

Our weight vector : R

€ Ry



Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

, i-th weight vector
Our weight vector :

Wy, (x1) | .. wyi(xq)

weights given by a
function f; of widths > 0




Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

i-th weight vector
Our weight vector : R 7 :

w; = Ws'yi(xl) Ws,yi(xCI)

Wsy, (X) = fs(vi — x + qZ)




Choosing the Weight Function

We can choose any nicely behaved function f that satisfies certain properties.

But some functions perform better for specific metrics...



Choosing the Weight Function

For distances measured in the £, metric, we choose

£ (x) = exp(~(c, - |x/s)P)

l

normalizing constant



Choosing the Weight Function

Gaussian function

For distances measured in the £, metric:

£ (%) = exp(—(7 - |x/s])?)

For distances measured in the £; metric: Laplacian function

200 = exp(=(2 - [x/sD) /\




Our Results

Theorem: (worst-case) For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n!/P any GRS code C S [Fg" with adjusted rate

fs(8)*
fs(Lq)

R* <

in time polynomial in n, g, and exp(1/s?) /.
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fs(Lq)

gap between rate and upper bound

in time polynomial inn, g, and exp(1/s?) /(fs(6)/+/ fs(Ly) —VR").
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Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n'/P any GRS code C € [Fg" with adjusted rate
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Our Results

Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n'/P any GRS code C € [Fg" with adjusted rate

volume of the n-dim. £, ball of radius nl/p

. . _r D
in time polynomial in n, g, and exp(1/s”) /7. (dimension-normalized) !



Our Results

Theorem: (average-case) For any metrictype 0 < p < 2, a € (0,1), prime g, channel parameterr > 0, :

Under a memoryless additive (continuous or discrete) channel whose distribution is D,.,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes any GRS code C € ]FC? with adjusted rate
pdf: Dy(x) = fr(x)/r

pmf: D (x) = fr(x)/fr(Z)

s?/(r, s)||?
e [, $)l5 =:Agpr)
fs(Lg) ’

(s)

in time polynomial in n, g, and exp(1/s?) /t,

except with probability < exp(—2n - f;(£,) - a® - 2).



Open Directions

The product of the rate R* and distance § for which our algorithm works approaches

R* -6 — 1/ volume of the n-dim. £,, ball of radius n1/P (dimension-normalized).

Why should this be the case?

What is the list-decoding capacity for decoding over general £, norms?

How do our algorithmic bounds compare?



Questions?
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