List Decoding Reed-Solomon Codes in the Lee, Euclidean, and Other Metrics

Math Crypto Workshop at FAU October 11-12, 2025

Alexandra Veliche Hostetler

(University of South Florida)

Chris Peikert

(University of Michigan)

$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

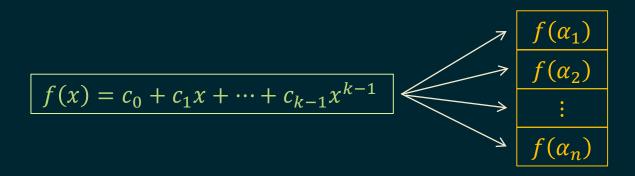
$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

$$f(x) = c_0 + c_1 x + \dots + c_{k-1} x^{k-1}$$

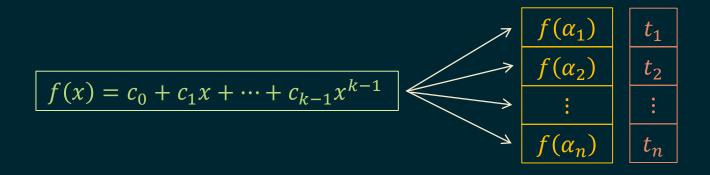
$$\boldsymbol{\alpha}=(\alpha_1,...,\alpha_n)\in\mathbb{F}_q^n$$
 evaluation points, $\boldsymbol{t}=(t_1,...,t_n)\in\mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$



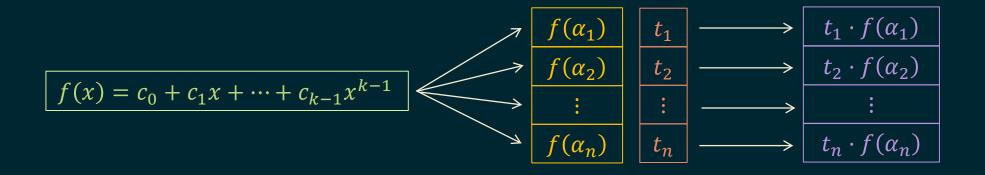
$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{ (t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k \} \subseteq \mathbb{F}_q^n.$$



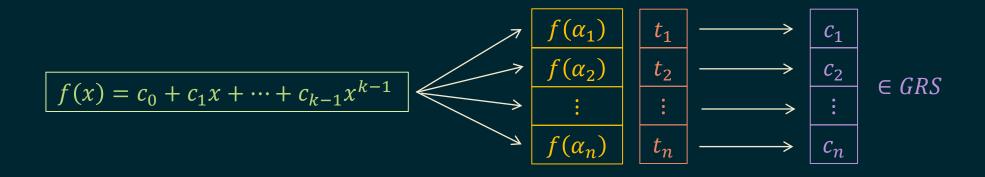
$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

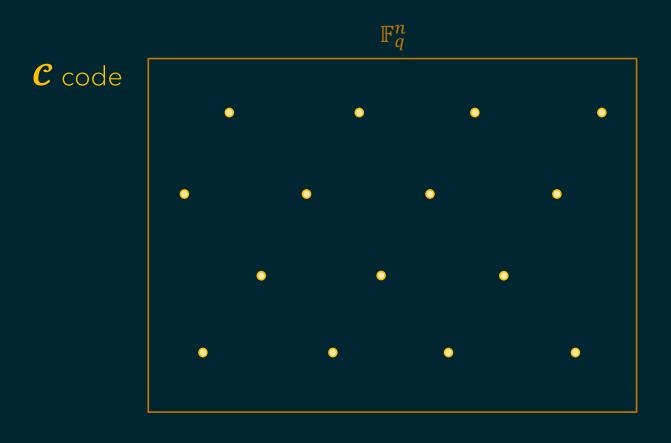


$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

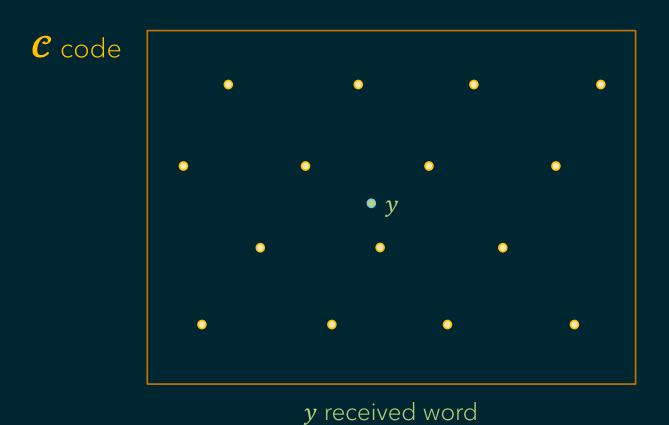
$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$



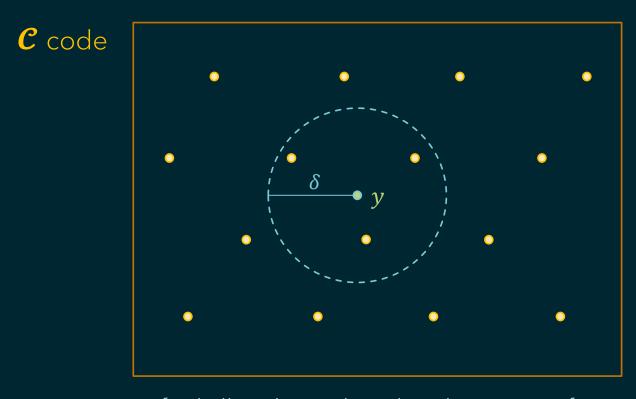
List-Decoding Problem



List-Decoding Problem

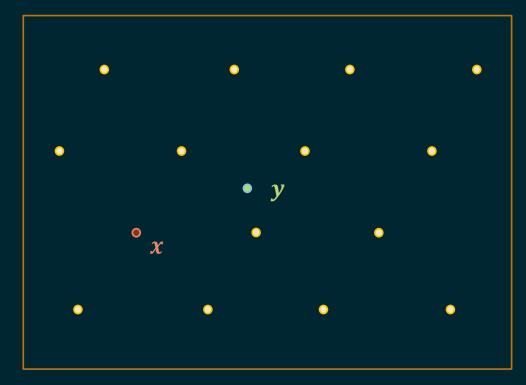


List-Decoding Problem



find all codewords within distance δ of y

Measuring Distance



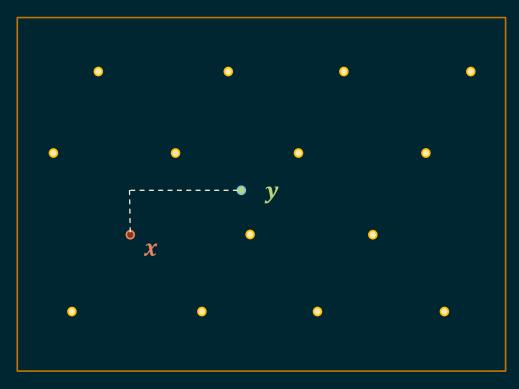
How is distance measured?

Hamming Distance

 \mathbb{F}_q^n $\bullet \ \mathbf{y} = (y_1, y_2, \dots, y_q)$

Lee Distance

 \mathbb{R}^n



 ℓ_1 norm

Euclidean Distance

 \mathbb{R}^n

 ℓ_2 norm

 $\underline{\ell}_p(\text{Quasi})\text{Norm}$: (on \mathbb{R}^n) For any p>0, $\pmb{x}=(x_1,\dots,x_n)\in\mathbb{R}^n$,

$$\|\mathbf{x}\|_p \coloneqq \left(x_1^p + \dots + x_n^p\right)^{1/p}.$$

 $\underline{\ell}_p(\text{Quasi})\text{Norm}$: (on \mathbb{R}^n) For any p>0, $\pmb{x}=(x_1,\dots,x_n)\in\mathbb{R}^n$,

$$\|\mathbf{x}\|_p \coloneqq \left(x_1^p + \dots + x_n^p\right)^{1/p}$$
.

$$\ell_p(\operatorname{Semi})\operatorname{Metric:}$$
 (on \mathbb{R}_q^n) For any $p>0$, $\pmb{x}=(x_1,\dots,x_n)\in\mathbb{R}_q^n$,

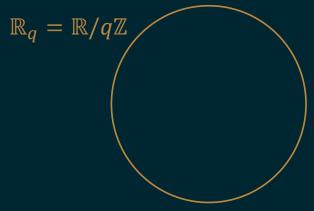
$$\|x\|_p \coloneqq \|\overline{x}\|_p.$$

 $\underline{\ell}_p(\text{Quasi})\text{Norm}$: (on \mathbb{R}^n) For any p>0, $\pmb{x}=(x_1,\dots,x_n)\in\mathbb{R}^n$,

$$\|\mathbf{x}\|_p \coloneqq \left(x_1^p + \dots + x_n^p\right)^{1/p}.$$
 $\mathbb{R}_q = \mathbb{R}/q\mathbb{Z}$

 $\ell_p({\sf Semi}){\sf Metric}$: (on \mathbb{R}_q^n) For any p>0, $\pmb{x}=(x_1,\dots,x_n)\in\mathbb{R}_q^n$,

$$\|x\|_p \coloneqq \|\overline{x}\|_p.$$

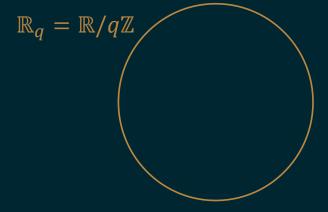


 $\underline{\ell}_p(\text{Quasi})\text{Norm}$: (on \mathbb{R}^n) For any p>0, $\pmb{x}=(x_1,\dots,x_n)\in\mathbb{R}^n$,

$$\|\mathbf{x}\|_p \coloneqq \left(x_1^p + \dots + x_n^p\right)^{1/p}.$$
 $\mathbb{R}_q = \mathbb{R}/q\mathbb{Z}$

 $\ell_p({\sf Semi}){\sf Metric}$: (on \mathbb{R}_q^n) For any p>0, $\pmb{x}=(x_1,\ldots,x_n)\in\mathbb{R}_q^n$,

$$\|\mathbf{x}\|_p \coloneqq \|\overline{\mathbf{x}}\|_p$$
.

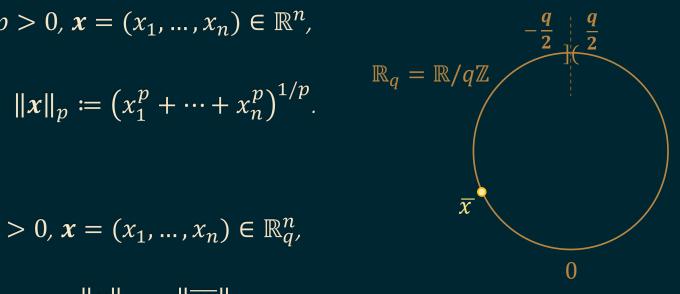


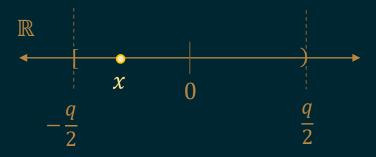
 $\ell_p(\text{Quasi})\text{Norm}$: (on \mathbb{R}^n) For any p>0, $x=(x_1,\dots,x_n)\in\mathbb{R}^n$,

$$\|\mathbf{x}\|_p \coloneqq \left(x_1^p + \dots + x_n^p\right)^{1/p}.$$

 $\ell_p(\text{Semi})$ Metric: (on \mathbb{R}_q^n) For any p>0, $\pmb{x}=(x_1,\ldots,x_n)\in\mathbb{R}_q^n$,

$$\|\mathbf{x}\|_p \coloneqq \|\overline{\mathbf{x}}\|_p$$
.





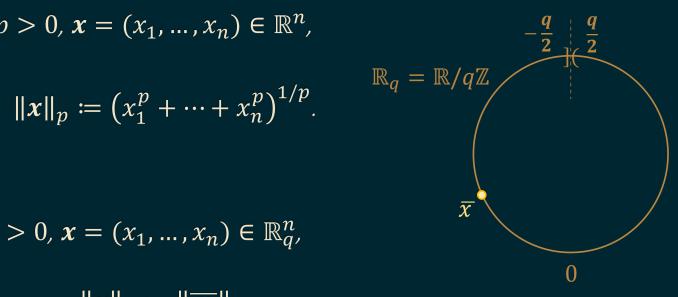
 $\ell_p(\text{Quasi})\text{Norm}$: (on \mathbb{R}^n) For any p>0, $\pmb{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$,

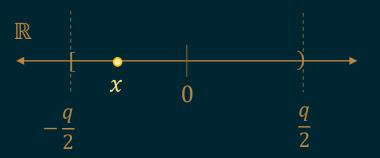
$$\|\mathbf{x}\|_p \coloneqq \left(x_1^p + \dots + x_n^p\right)^{1/p}$$

 $\ell_p(\text{Semi})$ Metric: (on \mathbb{R}_q^n) For any p>0, $\pmb{x}=(x_1,\ldots,x_n)\in\mathbb{R}_q^n$,

$$\|\mathbf{x}\|_p \coloneqq \|\overline{\mathbf{x}}\|_p$$
.

Decoding distance: $\delta = d/n^{1/p}$.





Our Results

<u>Theorem:</u> (informal) There is an efficient algorithm that list-decodes GRS codes over a prime field

from continuous error in the ℓ_p (semi)metric for any 0

up to arbitrarily large (relative) distance $\delta>0$ for corresponding small enough rates.

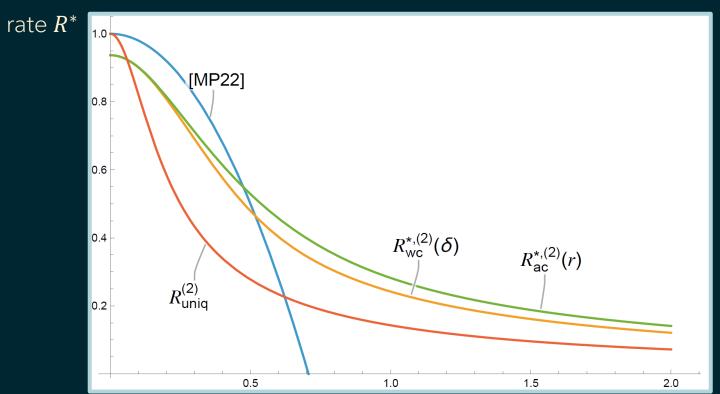
Prior Algorithms

Work	Metric	Codes	Decoder Type	Error Type	Rel. Decoding Distance $(oldsymbol{\delta})$
[Guruswami-Sudan, 1999]	Hamming	GRS	list	discrete	$\leq 1 - \sqrt{R}$
[Mook-Peikert, 2022]	Euclidean (ℓ_2)	prime-field GRS	list	continuous	$\leq \sqrt{(1-R)/2}$
[Roth-Siegel, 1994]	Lee (ℓ_1)	subclass of GRS, BCH	unique	discrete	$\leq 1 - R$
[Wu-Kuijper-Udaya, 2003]	Lee (ℓ_1)	prime-field GRS	list	discrete	> 0

Prior Algorithms

Work	Metric	Codes	Decoder Type	Error Type	Rel. Decoding Distance $(oldsymbol{\delta})$
[Guruswami-Sudan, 1999]	Hamming	GRS	list	discrete	$\leq 1 - \sqrt{R}$
[Mook-Peikert, 2022]	Euclidean (ℓ_2)	prime-field GRS	list	continuous	$\leq \sqrt{(1-R)/2}$
[Roth-Siegel, 1994]	Lee (ℓ_1)	subclass of GRS, BCH	unique	discrete	$\leq 1 - R$
[Wu-Kuijper-Udaya, 2003]	Lee (ℓ_1)	prime-field GRS	list	discrete	> 0
[Peikert-V.H. <i>,</i> 2025]	any ℓ_p , 0	prime-field GRS	list	continuous	$\leq 1/(R \cdot c_p(ep)^{1/p})$

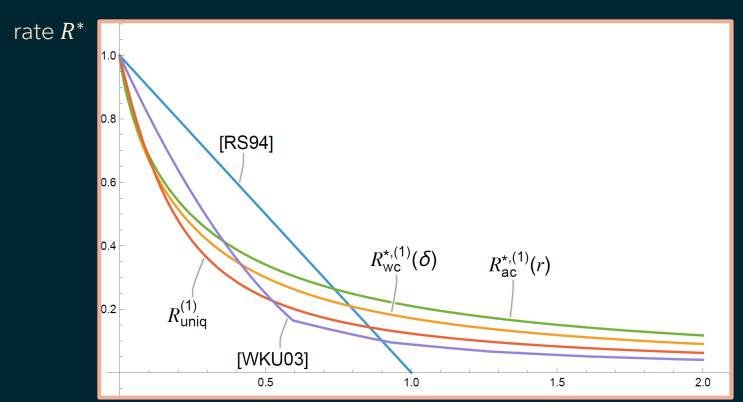
Comparison to Prior Algorithms



distance
$$\delta = \frac{r}{\sqrt{2\pi}}$$

Rate-distance trade-off for ℓ_2

Comparison to Prior Algorithms



distance $\delta = \frac{r}{2}$

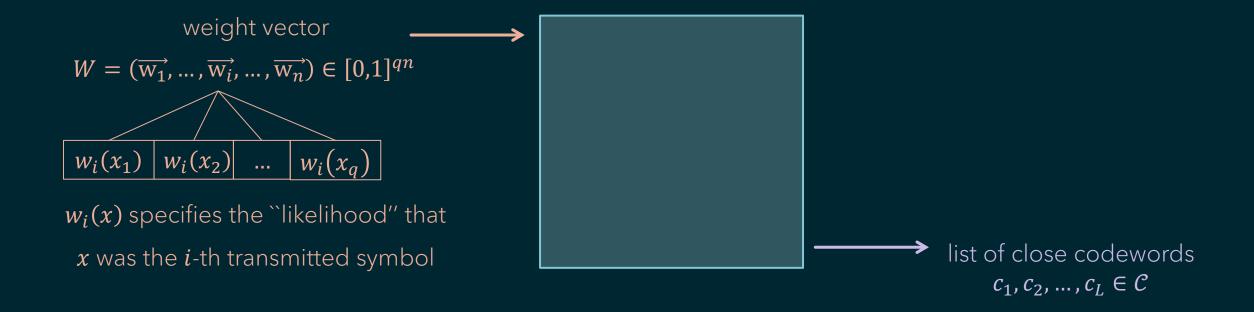
Rate-distance trade-off for ℓ_1

List-Decoding Algorithm

Soft-Decision Decoding Algorithm



Soft-Decision Decoding Algorithm



Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes $\mathcal{C} \subseteq \mathbb{F}_q^n$,

dimension
$$k$$
, adjusted rate $R^* = \frac{k-1}{n}$, with

Input: weight vector $W = (\overrightarrow{w_1}, ..., \overrightarrow{w_n}) \in [0,1]^{qn}$,

tiolerance parameter $\tau>0$

Output: list of all codewords $c \in C$ that are "closely correlated" with W

$$\operatorname{corr}(W, c) \gtrsim \sqrt{R^*}$$
.

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes $\mathcal{C} \subseteq \mathbb{F}_q^n$, dimension k, adjusted rate $R^* = \frac{k-1}{n}$, with

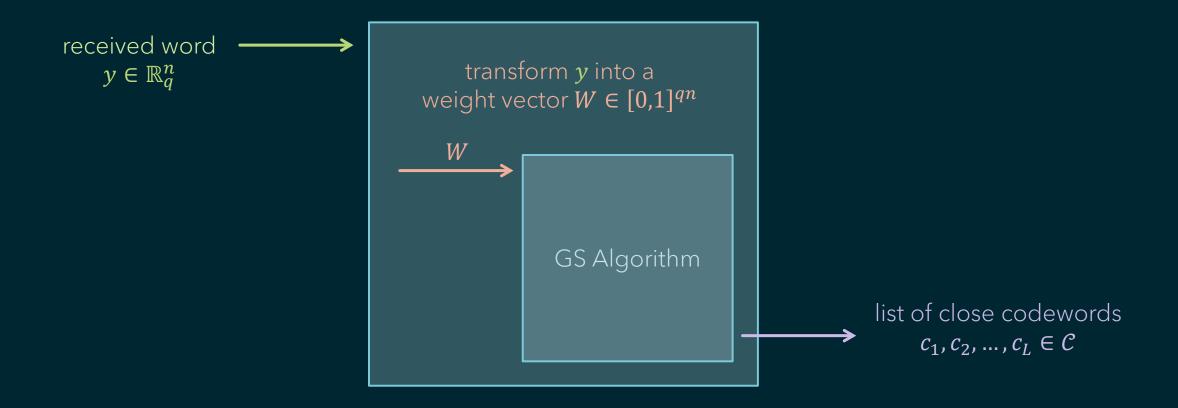
Input: weight vector $\mathbf{W} = (\overrightarrow{\mathbf{w}_1}, ..., \overrightarrow{\mathbf{w}_n}) \in [0,1]^{qn}$, tolerance parameter $\boldsymbol{\tau} > 0$

Output: list of all codewords $c \in C$ that are "closely correlated" with W

$$\operatorname{corr}(W, \boldsymbol{c}) \coloneqq \frac{\langle W, [\boldsymbol{c}] \rangle}{\|W\| \cdot \sqrt{n}} \ge \sqrt{R^*} + \boldsymbol{\tau}.$$

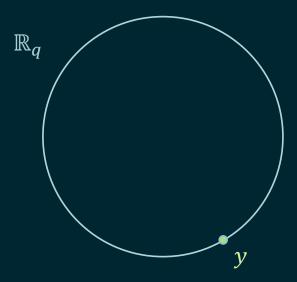
running in poly $\left(n, q, \frac{1}{\tau ||W||}\right)$ time.

Our List-decoding Algorithm



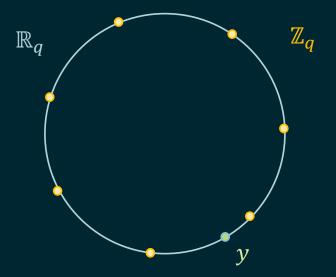
received word $\mathbf{y} = \left| y_1 \right| y_2 \left| \dots \right| y_n \left| \in \mathbb{R}_q^n \right|$

received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

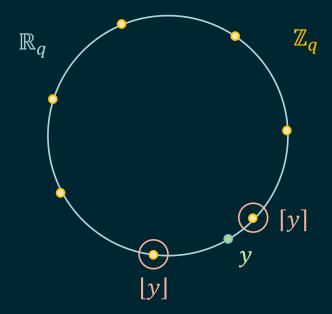


received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

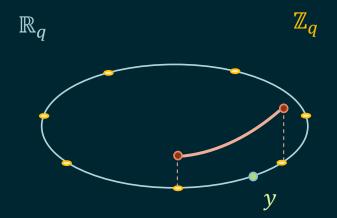
transmitted codeword must have coordinates in $\mathbb{F}_q \cong \mathbb{Z}_q$



received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

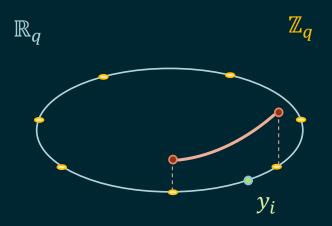


received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$



received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

[Mook-Peikert, 2022]:

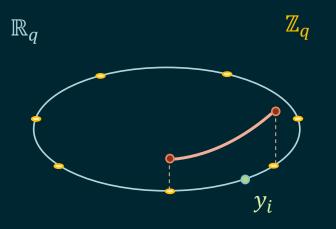


i-th weight vector

$$\overrightarrow{\mathrm{w}_i} = egin{bmatrix} 0 & 0 & w_i & w_i' & 0 & 0 & 0 \end{bmatrix}$$

received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

[Mook-Peikert, 2022]:



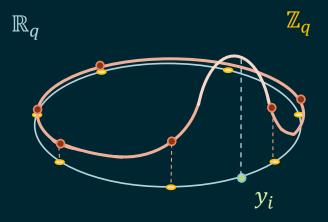
weight vector

$$\overrightarrow{\mathbf{w}_1} = \boxed{0 \quad 0 \quad w_1 \quad w_1' \quad 0 \quad 0 \quad 0}$$

$$\overrightarrow{\mathbf{w}_2} = \begin{bmatrix} w_2' & 0 & 0 & 0 & 0 & w_2 \end{bmatrix}$$

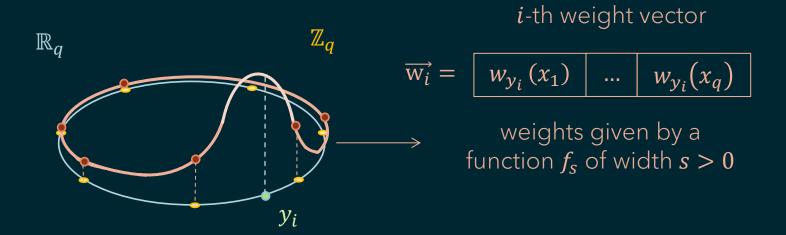
received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Our weight vector:



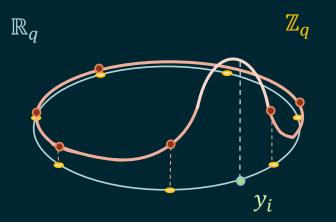
received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Our weight vector:



received word
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Our weight vector:



i-th weight vector

$$\overrightarrow{w_i} = \begin{bmatrix} w_{s,y_i}(x_1) & \dots & w_{s,y_i}(x_q) \end{bmatrix}$$

$$w_{s,y_i}(x) = f_s(y_i - x + q\mathbb{Z})$$

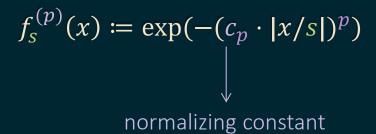
Choosing the Weight Function

We can choose any nicely behaved function f that satisfies certain properties.

But some functions perform better for specific metrics...

Choosing the Weight Function

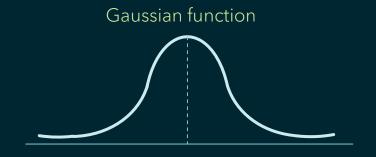
For distances measured in the ℓ_p metric, we choose



Choosing the Weight Function

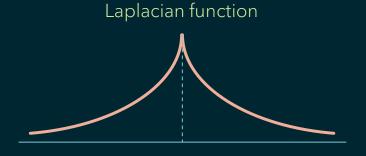
For distances measured in the ℓ_2 metric:

$$f_s^{(2)}(x) \coloneqq \exp(-(\pi \cdot |x/s|)^2)$$



For distances measured in the ℓ_1 metric:

$$f_s^{(1)}(x) \coloneqq \exp(-(2 \cdot |x/s|)^1)$$



Theorem: (worst-case) For any metric parameter 0 , prime field size <math>q, and distance $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_{\scriptscriptstyle S}(\delta)^2}{f_{\scriptscriptstyle S}(\mathcal{L}_{\scriptscriptstyle \boldsymbol{q}})}$$

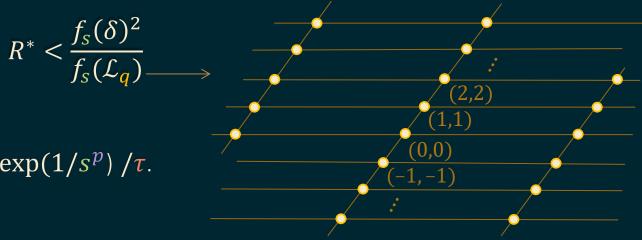
Theorem: For any metric parameter 0 , prime field size <math>q, and distance $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_S(\delta)^2}{f_S(\mathcal{L}_q)}$$

gap between rate and upper bound

in time polynomial in n, q, and $\exp(1/s^p)/(f_s(\delta)/\sqrt{f_s(\mathcal{L}_q)}-\sqrt{R^*})$.

Theorem: For any metric parameter 0 , prime field size <math>q, and distance $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate



Theorem: For any metric parameter 0 , prime field size <math>q, and distance $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_S(\delta)^2}{f_S(\mathcal{L}_{\mathbf{q}})} =: W_{\mathbf{q},\delta}^{(p)}(s)$$

Theorem: For any metric parameter 0 , prime field size <math>q, and distance $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_S(\delta)^2}{f_S(\mathcal{L}_q)} =: W_{q,\delta}^{(p)}(s) \xrightarrow{s,q/s \to \infty} \frac{1}{\delta \cdot c_p \cdot (ep)^{1/p}}$$

Theorem: For any metric parameter 0 , prime field size <math>q, and distance $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_S(\delta)^2}{f_S(\mathcal{L}_{\boldsymbol{q}})} =: W_{\boldsymbol{q},\delta}^{(p)}(s) \xrightarrow{s,q/s \to \infty} \frac{1}{\delta \cdot c_p \cdot (ep)^{1/p}}$$

in time polynomial in n, q, and $\exp(1/s^p)/ au$.

volume of the n-dim. ℓ_p ball of radius $n^{1/p}$ (dimension-normalized) !

<u>Theorem:</u> (average-case) For any metric type $0 , <math>\alpha \in (0,1)$, prime q, channel parameter r > 0, :

Under a memoryless additive (continuous or discrete) channel whose distribution is D_r ,

the GS soft-decision algorithm using weight vectors defined by $f_{\scriptscriptstyle S}^{(p)}$ for any s>0,

list-decodes any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{s^2/\|(r,s)\|_p^2}{f_s(\mathcal{L}_q)} =: A_{q,r}^{(p)}(s)$$

in time polynomial in n, q, and $\exp(1/s^p)/\tau$, except with probability $< \exp(-2n \cdot f_s(\mathcal{L}_q) \cdot \alpha^2 \cdot \tau^2)$.

$$pdf: D_r(x) = f_r(x)/r$$

 $pmf: D_r(x) = f_r(x)/f_r(\mathbb{Z})$

Open Directions

• The product of the rate R^* and distance δ for which our algorithm works approaches

 $R^* \cdot \delta \to 1$ / volume of the n-dim. ℓ_p ball of radius $n^{1/p}$ (dimension-normalized).

Why should this be the case?

What is the list-decoding capacity for decoding over general ℓ_p norms? How do our algorithmic bounds compare?

Questions?