List Decoding Reed-Solomon Codes
in the Lee, Euclidean, and Other Metrics

Math Crypto Workshop at FAU
October 11-12, 2025

Alexandra Veliche Hostetler Chris Peikert
(University of South Florida) (University of Michigan)

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [, finite field of size ¢ = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS, k(a, t) = {(t1- flay), o, ty - fan)): f € Fglx], deg(f) < k} < Iy

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [, finite field of size ¢ = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS, k(a, t) = {(t1- flay), o, ty - fan)): f € Fglx], deg(f) < k} < Iy

f(x) =coy+cyx+ -+ cpqxk?t

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,) € [non-zero twist factors

GRS,k (a,t) = {(tl - f(aq), e, by - f(an)) : f € Fglx], deg(f) < k} c 7.

f(ay)

f(a3z)

f(x) =coy+cyx+ -+ cpqxk?t

f(an)

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a=(ag..,a,) € [Fg evaluation points, & = (ty, .., t,) € [Fg non-zero twist factors

GRS,k (a,t) = {(t1 - f(ay), ..., ty, -f(an)) : f € Fglx], deg(f) < k} c 7.

f(ay) tq

f(a3z) ty

f(x) =coy+cyx+ -+ cpqxk?t

flan) | | tn

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS,k (a,t) = {(t1 - f(ag), ..., ty ~f(o:n)) : f € Fglx], deg(f) < k} c 7.

f(ay) t; | ——> | t1 - f(ay)

fx) =co+cix+ -+ cpoqx? f(C.KZ) L | —| b 'f.(sz)
: _—> .

f(an) ty | ———>| tn f(an)

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS,k (a,t) = {(t1 - f(ag), ..., t, ~f(o:n)) : f € Fglx], deg(f) < k} c 7.

f(ay) b | — = | a
f(a3) by | —> |

f(x) =coy+cyx+ -+ cpqxk?t E € GRS
f(an) tn . Cn

List-Decoding Problem

Fq

C code

List-Decoding Problem

C code

y received word

List-Decoding Problem

C code

find all codewords within distance § of y

Measuring Distance

How is distance measured?

Hamming Distance

q
¢ Yy = (yliyZJ "'iyq)
o ///

X = (xl, X2, ...,xq)

ILee Distance

IRTL

£, norm

Euclidean Distance

Rn

£, norm

£, (Semi)Metric

£,(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,) € R,

Ixll, = (xP + -+ 2B) 7.

£, (Semi)Metric

£,(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,) € R,

Ixll, = (P + -+ x2)"'.

£ (Semi)Metric: (on IRZI‘) Foranyp >0, x = (x4, ..., X,,) € R},

Ixllp = % 1lp.

£, (Semi)Metric

£p(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,,) € R",

R, = R/qZ
1/p g
x|l == (xf + -+ xﬁ) .

£ (Semi)Metric: (on [R’C}) Foranyp >0, x = (x4, ..., X,,) € R},

Ixllp = % 1lp.

£, (Semi)Metric

£p(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,,) € R",

Ixll, = (P + -+ x2)"'.

£ (Semi)Metric: (on [RZ) Foranyp >0, x = (x4, ..., X,,) € R},

Ixllp = % 1lp.

R, = R/qZ.
R
< [®
_ 41
2

L.

N

v

£, (Semi)Metric

£p(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,,) € R",

Ixll, = (P + -+ x2)"'.

£ (Semi)Metric: (on RZ) Foranyp >0, x = (x4, ..., X,,) € R},

Ixllp = % 1lp.

N[

N[

R, = R/qZ.
X
R
< { ®
_ 41
2

L.

N

v

£, (Semi)Metric

£p(Quasi)Norm: (on R™) Foranyp > 0, x = (xq, ..., X,,) € R",

Ixll, = (P + -+ x2)"'.

£ (Semi)Metric: (on RZ) Foranyp >0, x = (x4, ..., X,,) € R},

Ixllp = % 1lp.

Decoding distance: & = d/n/P.

N[

N[

R, = R/qZ.
X
R
< { TS
_ 41
2

L.

N

v

Our Results

Theorem: (informal) There is an efficient algorithm that list-decodes GRS codes over a prime field

from continuous error in the £, (semi)metric forany 0 < p < 2

up to arbitrarily large (relative) distance & > 0 for corresponding small enough rates.

Prior Algorithms

Rel. Decoding Distance

Work Metric Codes Decoder Type | Error Type (5)
[Guruswami-Sudan, .))
Hamming GRS list discrete <1—-+VR
1999]
[Mook-Peikert, . . : : .
2022] Euclidean (£,) | prime-field GRS list continuous < \/(1 —R)/2
[Roth-Siegel, subclass of GRS, : . _
1994] Lee (£4) ACH unique discrete <1—R
[Wu-Kuijper-Udaya, Lee (¢;) prime-field GRS list discrete >0

2003]

Prior Algorithms

Rel. Decoding Distance

Work Metric Codes Decoder Type | Error Type (5)
[Guruswami-Sudan, .))
Hamming GRS list discrete <1—-+VR
1999]
[Mook-Peikert, . . : : .
2022] Euclidean (£,) | prime-field GRS list continuous < \/(1 —R)/2
[Roth-Siegel, subclass of GRS, : . _
1994] Lee (£4) ACH unique discrete <1—R
[Wu-Kuijper-Udaya, Lee (¢;) prime-field GRS list discrete >0
2003]
[Peikert-V.H., any £, S . : ~ . 1/p
2025] 0<p<2 prime-field GRS list continuous | < 1/(R - c,(ep)™/P)

Comparison to Prior Algorithms

*
rate R™

IMP22]

distance § =

Rate-distance trade-off for ¢,

SR
=)

Comparison to Prior Algorithms

rate R*

[RS94]

distance § = g

Rate-distance trade-off for £

List-Decoding Algorithm

received word
n
y €ERy

> list of close codewords
C1,C2, ..., C €EC

Soft-Decision Decoding Algorithm

weight vector >

= (Wll ey Wi, ---;Wn) S [O’l]qn

> |ist of close codewords
1,62, ..., Ct EC

Soft-Decision Decoding Algorithm

weight vector

W = (Wl) ey Wi, ---;Wn) S [O’l]qn

AN

wi(x) | wi()| o [wi(xg)

w; (x) specifies the “likelihood” that

x was the i-th transmitted symbol

> |ist of close codewords
1,62, ..., Ct EC

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes C € [y,

. . . =
dimension k, adjusted rate R* = — with

Input: weight vector W = (wy, ..., w,) € [0,1]9",

Output: list of all codewords ¢ € C that are “closely correlated” with W

corr(W, ¢) = VR*.

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes C € Fy,

. . . . k-1
dimension k, adjusted rate R* = — with

Input: weight vector W = (wy, ..., w,,) € [0,1]9"

tolerance parametert > 0

Output: list of all codewords ¢ € C that are “closely correlated” with W

corr(W, c) := (W [\]/_ >VR* + 1.

running in poly (n q, ”1 ”) time.

Our List-decoding Algorithm

received word
n
y € Ry

list of close codewords
C1,Cp, ..., Cp €EC

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

Transforming into Weights

received word y = |1

Vo | e

Yn

n
€ R!

transmitted codeword must have coordinates in F, = Z,

Rq

Lq

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY
]Rq Zq
[y
y

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

i-th weight vector

[Mook-Peikert, 2022] : R, ZLg

w;=[0|0|w;|wj|l0]|0

Vi

Transforming into Weights

received word y =

[Mook-Peikert, 2022] :

R

q

V1

Y2

Yn

Yi

€ Ry

weight vector

wr=|0|0|w|wilo]0]|O
w, = |ws|0]0[0[0]0|w,
W, =|0/0[0]0|w,| w0

Transforming into Weights

received word y = |1

VYo | o

Yn

Our weight vector : R

€ Ry

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

, i-th weight vector
Our weight vector :

Wy, (x1) | .. wyi(xq)

weights given by a
function f; of widths > 0

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

i-th weight vector
Our weight vector : R 7 :

w; = Ws'yi(xl) Ws,yi(xCI)

Wsy, (X) = fs(vi — x + qZ)

Choosing the Weight Function

We can choose any nicely behaved function f that satisfies certain properties.

But some functions perform better for specific metrics...

Choosing the Weight Function

For distances measured in the £, metric, we choose

£ (x) = exp(~(c, - |x/s)P)

l

normalizing constant

Choosing the Weight Function

Gaussian function

For distances measured in the £, metric:

£ (%) = exp(—(7 - |x/s])?)

For distances measured in the £; metric: Laplacian function

200 = exp(=(2 - [x/sD) /\

Our Results

Theorem: (worst-case) For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n!/P any GRS code C S [Fg" with adjusted rate

fs(8)*
fs(Lq)

R* <

in time polynomial in n, g, and exp(1/s?) /.

Our Results

Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n!/P any GRS code C S [Fg" with adjusted rate

fs(8)*
fs(Lq)

gap between rate and upper bound

in time polynomial inn, g, and exp(1/s?) /(fs(6)/+/ fs(Ly) —VR").

R* <

Our Results

Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n'/P any GRS code C € [Fg" with adjusted rate

2 o o
e < 150) . v
179(’/‘:61)H . —
. . (2,2)
. 00(01’1)
in time polynomial inn, g, and exp(1/s?) /z. o (00) .
o
® ®

Our Results

Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n!/P any GRS code C S [Fg" with adjusted rate

2
. S0

SEATN

=W, 2 (s)

in time polynomial in n, g, and exp(1/s?) /.

Our Results

Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n'/P any GRS code C € [Fg" with adjusted rate

s,q/s = © 1
0 - Cp - (ep)l/p

in time polynomial in n, g, and exp(1/s?) /.

Our Results

Theorem: For any metric parameter 0 < p < 2, prime field size g, and distance § > 0,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes up to £, distanced =6 - n'/P any GRS code C € [Fg" with adjusted rate

volume of the n-dim. £, ball of radius nl/p

. . _r D
in time polynomial in n, g, and exp(1/s”) /7. (dimension-normalized) !

Our Results

Theorem: (average-case) For any metrictype 0 < p < 2, a € (0,1), prime g, channel parameterr > 0, :

Under a memoryless additive (continuous or discrete) channel whose distribution is D,.,

the GS soft-decision algorithm using weight vectors defined by fs(p) foranys > 0,

list-decodes any GRS code C €]FC? with adjusted rate
pdf: Dy(x) = fr(x)/r

pmf: D (x) = fr(x)/fr(Z)

s?/(r, s)||?
e [, $)l5 =:Agpr)
fs(Lg) ’

(s)

in time polynomial in n, g, and exp(1/s?) /t,

except with probability < exp(—2n - f;(£,) - a® - 2).

Open Directions

The product of the rate R* and distance § for which our algorithm works approaches

R* -6 — 1/ volume of the n-dim. £,, ball of radius n1/P (dimension-normalized).

Why should this be the case?

What is the list-decoding capacity for decoding over general £, norms?

How do our algorithmic bounds compare?

Questions?

	List Decoding Reed-Solomon Codes �in the Lee, Euclidean, and Other Metrics
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	List-Decoding Problem
	List-Decoding Problem
	List-Decoding Problem
	Measuring Distance
	Hamming Distance
	Lee Distance
	Euclidean Distance
	 ℓ 𝑝 (Semi)Metric
	 ℓ 𝑝 (Semi)Metric
	 ℓ 𝑝 (Semi)Metric
	 ℓ 𝑝 (Semi)Metric
	 ℓ 𝑝 (Semi)Metric
	 ℓ 𝑝 (Semi)Metric
	Our Results
	Prior Algorithms
	Prior Algorithms
	Comparison to Prior Algorithms
	Comparison to Prior Algorithms
	List-Decoding Algorithm
	Soft-Decision Decoding Algorithm
	Soft-Decision Decoding Algorithm
	Guruswami-Sudan Algorithm
	Guruswami-Sudan Algorithm
	Our List-decoding Algorithm
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Choosing the Weight Function
	Choosing the Weight Function
	Choosing the Weight Function
	Our Results
	Our Results
	Our Results
	Our Results
	Our Results
	Our Results
	Our Results
	Open Directions
	Slide Number 53

