
Codes & Lattices:
Computational Complexity and Constructions

by

Alexandra Veliche Hostetler

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2025

Doctoral Committee:

Associate Professor Mahdi Cheraghchi, Chair
Professor Nikhil Bansal
Associate Professor Viswanath Nagarajan
Professor Chris Peikert
Assistant Professor João Ribeiro, University of Lisbon

Alexandra Veliche Hostetler

aveliche@umich.edu

ORCID iD: 0000-0003-2788-9447

© Alexandra Veliche Hostetler 2025

Pentru Bunu

ii

ACKNOWLEDGEMENTS

There are countless people who were instrumental in my education and growth throughout

my time in the PhD program at the University of Michigan. In writing this brief acknowl-

edgment, I cannot hope to name them all or express adequate thanks to those that come

foremost to mind. Any omission here is due to my own oversight in the present moment (I

ask your pardon in advance if you have erroneously not been mentioned). The following is

my attempt to convey my gratitude to these people.

First of all, I would like to thank my advisor, Mahdi Cheraghchi, for his guidance. I

am very grateful that he accepted me as his student and introduced me to the beautiful

realm of coding theory. Throughout my time here, he encouraged me to explore a variety of

useful areas, set high expectations, and gave me the freedom to pursue my own intellectual

interests. It is largely due to his mentorship that I have gained independence as a researcher.

A special thanks is due to the members of my thesis committee: Mahdi, Nikhil Bansal,

Viswanath Nagarajan, Chris Peikert, and João Ribeiro. I appreciate the time they took

to listen attentively to my presentations and provide helpful feedback and questions. I am

also extremely grateful to those who read through my thesis carefully and provided detailed

feedback and suggestions.

I am greatly indebted to my wonderful collaborators, whose work with me has lead to

several results discussed in this thesis. João Ribeiro was a patient and experienced guide

during my first project as a grad student. Divesh Aggarwal graciously hosted me twice in

Singapore – an experience that has been one of the highlights of my graduate years. His

persistence when hitting barriers was motivating, and he taught me much about computa-

tional complexity. Mahdi and Nikhil Shagrithaya were both fun to work with and our short

project turned into a neat result that has left many open questions in its wake. Chris Peikert

has been an incredible collaborator and mentor. I am deeply grateful for his patience with

my nebulous questions and teaching me by example how to write and think methodically.

It is largely due to his work and instruction that I have developed a fascination with lattice

theory and cryptography.

I would like to thank the following people for useful discussions on topics related to this

thesis and beyond: Alexander Barg, Huck Bennett, Venkata Gandikota, Fernando Granha,

iii

and Daniele Micciancio. I am also grateful to Elena Grigorescu for her kind support, and to

Eldon Chung and Dimitrios Myrisiotis for their warm welcome in Singapore.

As a graduate student, I had the opportunity to teach several courses and develop an

enthusiasm for teaching. The instructors I worked with include Greg Bodwin, Paul Grubs,

Mahdi, Kim Diaz, and the rest of the EECS 203 team. I thank each one for teaching me

different approaches to teaching and its challenges.

I would also like to thank my labmates who have shared not only my office space, but

also the joys and hardships of graduate student life in the past few years. Among others,

these include Nikhil Shagrithaya, Lily Wang, Yi Tang, Dingyu Wang, Gary Hoppenworth,

Chaitanya Nalam, Amatya Sharma, Milind Prabhu, Luba Samborska, and Jiwon Kim. I have

fond memories of our interesting conversations, research discussions, hard lessons learned,

and fun adventures together. Similarly, I thank my flatmate Javiera Jilberto Vallejos.

During my time in Michigan, I have come to know some extraordinary people and make

some of the closest relationships I have. It would not be an exaggeration to say that these

people have shaped the course of my life over the past few years. I am thankful to all those I

have met through the Orthodox Christian Fellowship (OCF) student organization, including

Fr. Nick. There are too many others to list here. I am deeply grateful to the nuns of Holy

Dormition Monastery, who gave me a second home when I moved away from home, prayed

for me constantly, and provided me with a rich practical education in parallel to my graduate

studies. I also thank Fr. John for his guidance.

The final acknowledgment goes to my family for their unwavering love and support. My

parents and grandparents also provided me with a foundation in mathematics and a thirst

to learn and explore the unknown, which has formed the basis of my academic pursuits. My

siblings have been the closest friends and conspirators one could wish for. Lastly, I thank

my beloved husband Alex. Glory to God for all things!

Alexandra Veliche Hostetler

May 2025

The research presented in this thesis was supported in part by the National Science Founda-

tion under grants CCF-2236931, CCF-2107345, and CCF-2006455 and the (Singapore) National

Research Foundation under grant NRF-NRFI09-0005. A number of grants from the Rackham

Graduate School and FOCS, ISIT, and TCC conference committees contributed to supporting the

travel associated with the research presented herein.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

ABSTRACT . viii

CHAPTER

1 Introduction . 1

1.1 A Brief History of Codes & Lattices . 1
1.2 Our Contributions . 2
1.3 A Note on Navigating this Thesis . 4

2 Preliminaries . 5

2.1 Notation . 5
2.2 Coding Definitions . 7
2.3 Matrix Groups . 8
2.4 Code Equivalence Problems . 8
2.5 Learning With Errors . 9
2.6 Lattice Definitions . 10
2.7 Computational Lattice Problems . 12
2.8 Fourier Analysis . 13
2.9 Probability and Distributions . 14
2.10 Lattice Smoothing & Roughness . 17

Computational Complexity 20

3 Learning With Errors . 21

3.1 Alternative Measure of Computational Hardness 23
3.2 From BDD to Search-LWE . 28

3.2.1 BDD to Generalised LWE . 29
3.2.2 Generalised LWE to Standard LWE 35
3.2.3 Reducing the Modulus for Search-LWE 37

3.3 From Search-LWE to Decision-LWE . 38
3.3.1 Search-LWE to GL-LWE . 39
3.3.2 GL-LWE to Decision-LWE . 47

v

3.4 Future Directions . 49

4 Code Equivalence . 50

4.1 Reductions from PCE to LCE and SPCE . 52
4.1.1 From PCE to LCE . 55
4.1.2 From LCE to PCE . 56

4.2 Future Directions . 60

Constructions 60

5 List-Decoding
Generalized Reed-Solomon Codes . 61

5.1 List-Decoding Reed–Solomon Codes . 63
5.1.1 Soft-Decision Decoding . 63
5.1.2 From Received Words to Weight Vectors 64
5.1.3 Main Theorem . 65
5.1.4 Average-Case Decoding . 67

5.2 General ℓp (Quasi)Norms . 68
5.2.1 Worst-Case Decoding . 69
5.2.2 Average-Case Decoding . 70

5.3 The ℓ2 Norm and Gaussian Error . 73
5.3.1 Bounds . 73
5.3.2 Worst-Case Decoding . 75
5.3.3 Average-Case Decoding . 77

5.4 The ℓ1 Norm and Laplacian Error . 78
5.4.1 Bounds . 78
5.4.2 Worst-Case Decoding . 80
5.4.3 Average-Case Decoding . 82

5.5 Future Directions . 83

6 Lattice List-Decoding Bounds . 84

6.1 Dense Lattices from Random Linear Codes 86
6.1.1 A Sufficient Condition for Achieving Minkowski’s Bound 87
6.1.2 Constructing Codes that Satisfy the Condition 89

6.2 Lattice List-decoding Capacity . 92
6.2.1 List-decoding Capacity for Lee Metric 92
6.2.2 Lattice List-decoding Capacity . 93

6.3 Future Directions . 95

APPENDICES . 97

BIBLIOGRAPHY . 103

vi

LIST OF FIGURES

FIGURE

4.1 The matrix A′ obtained by Construction 4.10. 54
4.2 The structure of matrix M′. 58
4.3 The structure of matrix S′. 58

5.1 Plots of the adjusted rate R∗,(p), as a function of the relative ℓp decoding dis-
tance δ = d/n1/p or corresponding channel error width r = p1/p · cp · δ, for which
our algorithm can list decode GRS codes in the worst case (wc) or average case
(ac), respectively, for p = 2 (left) and p = 1 (right). (For simplicity, these plots
assume a field size q ≫ δ, r.) For comparison, also shown are the corresponding
functions from the prior work on list decoding GRS codes in the ℓ2 norm [MP22],
and for unique decoding a special subclass of GRS codes in the ℓ1 norm [RS94]. 63

6.1 The parity-check matrices generated by Construction 6.8. 90

vii

ABSTRACT

Linear codes and point lattices are two mathematical objects that play a fundamental

role in many areas of computer science. In cryptography the computational hardness of

problems for codes and lattices is used as a security assumption for most cryptographic

schemes proposed to be post-quantum. Understanding the complexity of these problems, and

how techniques for codes and lattices are related, is crucial for understanding the security of

the corresponding cryptosystems. With this motivation, we explore both the computational

complexity and algorithmic sides of coding problems and lattice problems.

We study the computational complexity of two key problems relevant to cryptography:

Learning With Errors (LWE) and Code Equivalence (CE). For problems like LWE, we intro-

duce an alternative measure of computational hardness: the maximum success probability

achievable by any probabilistic polynomial-time algorithm. This more accurately models the

security goals of cryptosystems based on these problems. Under this new perspective, we

study the worst-case to average-case hardness of LWE and prove a tight Turing reduction

from the Bounded Distance Decoding (BDD) problem to both search and decision variants

of LWE. Our reduction improves previous reductions by using only a few oracle calls and

explicitly quantifying the loss in success probability. The CE problem has several variants,

including Permutation (PCE), Signed Permutation (SPCE), and Linear (LCE) Code Equiva-

lence. We prove polynomial-time Karp reductions from PCE to both LCE and SPCE. Along

with a known Karp reduction from SPCE to the Lattice Isomorphism Problem (LIP), our

second result implies a reduction from PCE to LIP.

On the algorithmic side, we use lattices and Fourier analytic techniques to construct

an algorithm that list-decodes Generalized Reed-Solomon (GRS) codes from worst-case

or average-case errors over any ℓp (quasi)norm where 0 < p ≤ 2. This is based on the

Guruswami-Sudan soft-decision decoding algorithm. Our algorithm generalizes previous al-

gorithms for the ℓ2 and ℓ1 norms and achieves a better rate-(decoding) distance trade-off

than these algorithms. We also discuss lattice list-decoding capacity bounds for general

norms and construct lattices with high density - which achieve the Minkowski bound - using

Construction D applied to random linear codes.

viii

CHAPTER 1

Introduction

1.1 A Brief History of Codes & Lattices

Linear codes and point lattices are two mathematical objects that appear throughout

cryptography and the theory of error-correcting codes. Linear codes are vector subspaces

over a finite field, given by the span of a generator matrix. Lattices are discrete additive

subgroups over the field of real numbers, given by the integer span of a basis matrix. Their

close similarity in structure has led to increasing interest in understanding the connections

between techniques and computational problems in both areas.

Over the last half-century, computational coding problems and lattice problems have been

used as the basis for much of post-quantum cryptography. More precisely, the computational

hardness of problems for codes and lattices has been used as a security assumption for most

cryptographic schemes proposed to be secure under attacks by quantum computers. Because

of this important application and their prevalent use, understanding the complexity of these

problems is crucial for understanding the security of cryptosystems based on them. In this

thesis, we study the computational hardness of Learning With Errors (LWE), a coding

problem closely related to several important lattice problems, as well as variants of the Code

Equivalence (CE) problem. We uncover some new connections between coding and lattice

problems.

The theory of error-correcting codes was initiated by Shannon in [Sha48a, Sha48b]. One

of its two main branches is that of channel coding, which studies how one can communicate

reliably over a noisy or unreliable channel. In the channel coding model, a codeword is

transmitted through a channel, which adds some noise to it to produce a perturbed version

of the message, called the received word. Using a code, the message can be encoded before

transmission to make it more resilient to noise and allow for reliable decoding of the received

word. Recovering the exact transmitted message from a given received word is the goal of

unique decoding. This notion can be relaxed to allow the decoder to output a short list of

1

possible codewords that includes the transmitted message; this is known as list decoding. In

this thesis, we construct a list-decoding algorithm for a widely-used family of codes, called

Generalized Reed-Solomon (GRS) codes, over ℓp (quasi)norms.

Just in the last decade, the similarity between codes and lattices has inspired use of

lattices for error-correction, particularly for lattice list-decoding. The quality of a lattice

for error-correction can be measured in terms of its density in the ambient space under the

constraint that the distance between any pair of lattice points is at least one. Several works

have constructed lattices with reasonably high density from codes, and provided efficient

algorithms for decoding them. In this thesis, we study the conditions sufficient for such a

lattice to achieve the highest possible density up to a constant factor and show that these

lattices exist using a randomized construction. We also study capacity bounds up to which

arbitrary lattices can be list decoded efficiently.

1.2 Our Contributions

In this thesis, we explore the connections between codes and lattice from both a compu-

tational complexity and algorithmic perspective.

In Part I, we focus on the computational complexity of coding problems and lattice

problems. We specifically study the hardness of the LWE problem – which can be viewed

as a coding problem – relative to some well-known lattice problems. We also study the

hardness of the CE problem, showing reductions among several useful variants and thereby

uncovering a connection to an analogous lattice problem.

In Part II, we focus on algorithms and constructions for codes and lattices. Using the

Guruswami-Sudan soft-decision algorithm and techniques from Fourier analysis over lattices,

we construct a list-decoding algorithm for Generalized Reed-Solomon codes that works over

ℓp (quasi)norms. Using bounds from coding theory, we present a sufficient condition needed

to construct dense lattices and give a randomized construction that satisfies this with high

probability. We also present some probabilistic capacity bounds for list decoding arbitrary

lattices over general norms.

Complexity of LWE for Practical Cryptography. Chapter 3 describes our study of

the complexity of LWE. The LWE problem is one of the most important computational

problems in post-quantum cryptography. Informally, LWE is the problem of decoding a ran-

dom linear code under some small real-valued error. When Regev introduced this problem

in [Reg09], he presented a quantum reduction from a variant of the Shortest Vector Problem

for lattices to the Bounded Distance Decoding (BDD) problem for lattices to LWE. Because

2

LWE is used as a hard problem for cryptographic schemes proposed to be used in practice,

we are interested in understanding its hardness under computationally bounded adversaries.

Motivated by this practical application, we study the computational complexity of LWE by

quantifying the success probability of any (probabilistic) polynomial-time algorithm that at-

tempts to solve it. Under our alternative framework, we adapt reductions from the literature

to give a worst-case to average-case Turing reduction from BDD to LWE that makes a single

oracle call to the LWE solver and explicitly quantifies the loss in success probability. This

reduction is tight in the sense that it gives a lower bound on the success probability of any

polynomial-time algorithm for LWE which asymptotically matches the success probability

of the best efficient algorithm we know of for LWE.

Complexity of the Code Equivalence Problem. Chapter 4 describes our work on the

complexity of CE. The CE problem has found applications in cryptography, and is used

as a security assumption for several proposed post-quantum schemes. Informally, CE is

the problem of determining whether two codes are equivalent up to some metric-preserving

transformation. The variants of the problem specify the type of transformation; for example,

Permutation CE (PCE), Signed Permutation CE (SPCE), and Linear CE (LCE). We prove

efficient Karp reductions from PCE to LCE and from PCE to SPCE. There is an analogous

problem to CE for lattices called the Lattice Isomorphism Problem (LIP). Together with a

recent reduction from SPCE to LIP, our results imply a reduction from PCE to LIP.

List-Decoding Algorithm for Generalized Reed-Solomon Codes Chapter 5 de-

scribes our work on list-decoding GRS codes over ℓp (quasi)norms. Reed-Solomon codes

and efficient algorithms for list-decoding them is an active area of interest, as these have

many applications in computer science. There has been much work on efficiently decoding

GRS codes over the Hamming metric, but only recently has decoding over other metrics

and norms been studied. To our knowledge, there are two such algorithms: The first is an

algorithm by Roth and Siegel in [RS94] that unique-decodes a special subclass of GRS codes

from discrete errors over the Lee metric, which can be viewed as the ℓ1 norm. The second

is a list-decoding algorithm by Mook and Peikert in [MP22] for decoding continuous errors

over the ℓ2 norm. We construct an algorithm that list-decodes GRS codes from continuous

errors in the ℓp (quasi)norm, where 0 < p ≤ 2. Our algorithm achieves a better rate-distance

trade-off than the previous algorithms for the ℓ1 and ℓ2 norms. We also consider average-case

decoding from errors produced probabilistically.

3

Conditions and Capacity Bounds for Lattice List-Decoding Chapter 6 describes our

study of lattice list-decoding bounds. A popular way of obtaining lattices for list-decoding is

to construct them from linear codes. In Section 6.1, we discuss lattice density as a measure

of quality for list-decoding and present a sufficient condition for the underlying codes that

ensures the corresponding lattice has a high density. We show the existence of such lattices

by constructing random linear codes for which the lattice achieves high density with high

probability. Motivated by our work on list-decoding over ℓp (quasi)norms in Chapter 5, we

study analogous lattice list-decoding capacity bounds in Section 6.2.

1.3 A Note on Navigating this Thesis

Given the author’s background, this thesis was written primarily with a theoretical com-

puter science audience in mind. For this reason, some familiarity with linear and abstract

algebra, probability and combinatorics, algorithmic analysis, and asymptotic notation is as-

sumed of the reader. In an effort to make this thesis accessible and as self-contained as

possible, we attempt to provide the mathematical formalism needed to understand the re-

sults presented. For reference, a list of definitions and common notation used throughout

this thesis is provided in Chapter 2. The individual chapters will often contain concepts and

definitions that are only relevant to the work presented in that particular chapter. These are

not repeated in Chapter 2. Future directions and open problems are discussed at the end of

each chapter. The author hopes that this thesis will be of use to the reader. If the reader

finds any errors, please let the author know. Happy reading!

4

CHAPTER 2

Preliminaries

In this chapter, we introduce the notation and terminology that will be used throughout

this thesis. We also recall definitions and some useful facts from coding theory and lattice

theory that will be used in later chapters.

2.1 Notation

We use N to denote the set of natural numbers including zero. For any positive integer n,

we write [n] := {1, . . . , n}. For any pair of (positive) integers n and m where n < m, we use

the shorthand [n,m] := {n, n+ 1, . . . ,m− 1,m}.

Algebraic Notation. For a positive integer p, define the quotient ring Zp := Z/pZ and

the additive group Rp := R/pZ. For a prime power q, let Fq denote the finite field of size q.

When q is prime, we identify Zq with the finite field Fq in the natural way. We often identify

Zq with Fq, and with the integers {0, 1, . . . , q − 1} using the natural embedding into Z.
We will also use T to denote the additive quotient group R/Z of real numbers modulo the

integers. For any commutative ring R, we use R∗ to denote its multiplicative subgroup of

invertible elements. For any x ∈ Rp (which is a coset of pZ), define x ∈ [−p/2, p/2) to

be the unique real number such that x = x (mod p), i.e., the “zero-centered” distinguished

representative of x. We also apply this notation entry-wise to vectors over Rp.

For two groups X, Y , their direct sum group X ⊕ Y is their Cartesian product with the

group operation defined component-wise. This notation extends to the direct sum of group

cosets, which is a coset of the direct sum of the groups.

Linear Algebraic Notation. Vectors are denoted by boldface lowercase letters, such as

v. The i-th coordinate of v is denoted by vi (not boldface). For any pair of (column) vectors

x and y, we write ⟨x,y⟩ for the standard dot product given by xTy. Matrices are denoted

5

by boldface uppercase letters, such as B. For any matrix B and positive integer i, we use

B[i] to denote the i-th column of B. For a pair of positive integers i and j, we use B[i, j]

to denote the entry in the i-th row and j-th column. For positive integers r, r′, c, and c′

such that r ≤ r′ and c ≤ c′, we will use B[r : r′, c : c′] to specify the block submatrix of

B delimited by rows r and r′ (inclusive) and columns c and c′ (inclusive). For any vector

x = (x1, . . . , xn) ∈ Rn and 0 < p < ∞, we denote its length in the ℓp (quasi)norm by

∥x∥p := (xp
1 + . . .+ xp

n)
1/p. For p ≥ 1, this is a norm. For p < 1, this is a quasinorm, which

means the triangle inequality axiom is relaxed to require only that ∥x+y∥ ≤ κ · (∥x∥+∥y∥)
for some fixed κ.

Function Notation. For any function f : D → C and countable subset X ⊆ D, we define

f(X) :=
∑

x∈X f(x). For any positive k ∈ Z, we extend the domain to Dk multiplicatively

and define

fk(x) :=
k∏

i=1

f(xi) , (2.1)

often omitting the superscript k when it is clear from context. When D = Rn, for any real

s ̸= 0 we define fs(x) := f(x/s). For any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)

of the same dimension, their coordinate-wise (or Hadamard) product is denoted by x⊙y :=

(x1 · y1, . . . , xn · yn).

Lemma 2.1. Let f : D → R and X, Y ⊆ D be countable subsets of its domain (e.g., lattice

cosets). Then

f(X ⊕ Y) = f(X) · f(Y) .

Proof. This follows directly from the definition of direct sum and multiplicativity (Equa-

tion (2.1)):

f(X ⊕ Y) =
∑
x∈X
y∈Y

f(x⊕ y) =
∑
x,y

f(x) · f(y) =
(∑

x

f(x)
)(∑

y

f(y)
)
= f(X) · f(Y) .

Algorithms are often named using calligraphic uppercase letters, such as A, particularly
in Chapter 3.

The following function appears in the Gilbert-Varshamov bound (Lemma 6.9).

6

Definition 2.2 (q-ary Entropy Function). For any integer q ≥ 2 and x ∈ (0, 1), the q-ary

entropy function is defined by

Hq(x) := x · logq(q − 1)− x · logq(x)− (1− x) · logq(1− x) .

2.2 Coding Definitions

A linear (error-correcting) code of block length n over the alphabet Fq is a linear subspace

C of Fn
q . As a subspace, C has a dimension k for some integer 0 ≤ k ≤ n. We sometimes refer

to the codimension of a code, defined as n−k. The rate of a code is given by R := k/n. Any

linear code can be expressed as the row span of a generator matrix G ∈ Fk×n
q . Note that this

is not unique, because elementary row operations do not change the span of G. The elements

of a code are called codewords. The Hamming distance between two vectors x,y ∈ Fn
q is the

number of coordinates in which they differ and is denoted by dH(x,y) := |{i ∈ [n] : xi ̸= yi}|.
The minimum distance of a code C is the minimum Hamming distance between any pair of

distinct codewords in C. The trivial code, which only contains 0, has minimum distance n by

convention. Using the standard notation for linear codes, we say that C is an [n, k, d]q-code.

All codes considered in this thesis are linear.

A code C ⊆ Fn
q is (r, L)-list-decodable if, for any vector y ∈ Fn

q , there are at most L

codewords within distance r of y, i.e., |{c ∈ C : dH(c,y) ≤ r}| ≤ L. We will use a similar

notion for lattices (see Section 2.6).

Definition 2.3 ((Generalized) Reed–Solomon code). Let n be a positive integer and q a

prime power such that n ≤ q. For a non-negative integer k, a vector α ∈ Fn
q with distinct

entries, and a vector t ∈ (Fq \ {0})n with (not necessarily distinct) non-zero entries, the

Generalized Reed–Solomon (GRS) code of dimension k with evaluation points α and twist

factors t is defined as

GRSq,k(α, t) := {t⊙ f(α) = (t1 · f(α1), . . . , tn · f(αn)) : f ∈ Fp[x], deg(f) < k} .1

A special case of this is a Reed–Solomon (RS) code, which is obtained by using trivial twist

factors t = (1, . . . , 1).

1By convention, the zero polynomial has degree −∞.

7

2.3 Matrix Groups

For any field F and n ∈ N, we will consider the following types of n × n matrices over

F. The identity matrix In has ones for the diagonal entries and zeros in all other entries.

A permutation matrix P ∈ Pn(F) contains exactly one 1 in each row and column and 0s

everywhere else. A signed permutation matrix P ∈ SPn(F) contains exactly one non-zero

entry in each row and column, and each of these can be either 1 or −1. A monomial matrix

M ∈ Mn(F) contains exactly one non-zero entry in each row and column, but these can

take values in F∗. Any monomial matrix M can be written as the product M = DP of a

diagonal matrix D = diag(d1, . . . , dn), where di ∈ F∗, and a permutation matrix P ∈ Pn(F).
Any permutation matrix P ∈ SPn defines a bijection over the set of column indices [n];

we denote this by σP : [n]→ [n].

Each of these sets of matrices forms a group under matrix multiplication. We use GLn(F)
to denote the group of invertible matrices, Pn(F) to denote the set of permutation matrices,

SPn(F) to denote the set of signed permutation matrices, andMn(F) to denote the set of

monomial matrices. These groups satisfy Pn(F) ⊆ SPn(F) ⊆Mn(F) ⊆ GLn(F). If it is clear
from context, we do not specify the field for these matrix groups.

2.4 Code Equivalence Problems

Two codes C, C ′ ⊆ Fn
q are said to be permutation equivalent if there exists a permutation

of the coordinates of C that gives C ′. We define three variants of this problem in increasing

order of generality.

Definition 2.4 (PCE). For positive integers n and k and a field Fq of size q, the Permutation

Code Equivalence problem, denoted by PCE, is the following decision problem: Given a

pair of generator matrices G,H ∈ Fk×n
q , decide whether there exist an invertible matrix

S ∈ GLk(Fq) and a permutation matrix P ∈ Pn(Fq) for which SGP = H holds.

Definition 2.5 (SPCE). For positive integers n and k and a field Fq of size q, the Signed

Permutation Code Equivalence problem, denoted by SPCE, is the following decision problem:

Given a pair of generator matrices G,H ∈ Fk×n
q , decide whether there exist an invertible

matrix S ∈ GLk(Fq) and a signed permutation matrix P′ ∈ SPn(Fq) for which SGP′ = H

holds.

Definition 2.6 (LCE). For positive integers n and k and a field Fq of size q, the Linear

Code Equivalence problem, denoted by LCE, is the following decision problem: Given a

8

pair of generator matrices G,H ∈ Fk×n
q , decide whether there exist an invertible matrix

S ∈ GLk(Fq) and a monomial matrix M ∈Mn(Fq) for which SGM = H holds.

For brevity, we say that a pair of matrices (G,H) is in PCE (or SPCE, LCE) if G and H

satisfy the conditions required for the pair to be a YES instance of the problem. (Note that

this treats the decision problem as a language.)

The following is an analogous problem to CE for lattices. Here On(R) denotes the set of

orthogonal n× n matrices over the reals.

Definition 2.7 (LIP). For any positive integer n, the Lattice Isomorphism Problem, denoted

LIP, is the following decision problem: Given a pair of basis matrices B,B′ ∈ Rk×n, decide

whether there exists an invertible matrix S ∈ Rk×k and an orthogonal matrix O ∈ On(R)
for which SBO = B′.

2.5 Learning With Errors

In this section, we define a matrix problem that is closely related to the computational

lattice problems in Section 2.7. Let n be a positive integer, p be a prime modulus, and ϕ be

a distribution over T.

Definition 2.8 (LWE Distribution). For any distribution ϕ over T and secret vector s ∈ Zn
p ,

the Learning with Errors (LWE) distribution, denoted As,ϕ, is the distribution over Zn
p × T

obtained by choosing a ∈ Zn
p uniformly at random and sampling e from ϕ, then outputting

(a, ⟨a, s⟩ /p+ e).

The standard Learning with Errors problem has both search and decision variants.

Definition 2.9 (Search-LWE). The search-LWEn,p,ϕ problem is defined as: Given a poly-

nomial number (in n) of samples from the LWE distribution As,ϕ, output the secret vector

s ∈ Zn
p .

Definition 2.10 (Decision-LWE). The decision-LWEn,p,ϕ problem is defined as: Given a

polynomial number (in n) of samples either drawn from the distributionAs,ϕ or independently

drawn from the uniform distribution over Zn
p × T, output

- YES if the samples are from the LWE distribution As,ϕ, or

- NO if the samples are uniformly random over Zn
p × T.

Definition 2.11 (Binary-LWE). The binLWEn,p,ϕ problem is the search-LWEn,p,ϕ problem

restricted to binary secret vectors, i.e., where s is uniform over the set {0, 1}n.

9

2.6 Lattice Definitions

A lattice is an infinite set of periodically-arranged points in Euclidean space that contains

the origin. More specifically, it is a discrete additive subgroup of Euclidean space. It can be

described as the set of all integer linear combinations of a finite set of linearly independent

vectors.

Definition 2.12 (Lattice, Basis). An (n-dimensional, m-rank) lattice L ⊂ Rn is the set of all

integer linear combinations of somem linearly independent basis vectors B = {b1, . . . ,bm} ⊂
Rn:

L = L(B) :=
{ m∑

i=1

zibi : zi ∈ Z
}
.

A lattice basis B can equivalently be expressed as a matrix B ∈ Rn×m whose columns are

the vectors b1, . . . ,bm, so we also write L(B) := L(B). Here m is the rank of the lattice as

a free Z-module, and n is the dimension of the ambient space.

Note that a given lattice has multiple different bases, which are all related by right-

multiplication by unimodular matrices in Zn×n. Any lattice that is a subset of a lattice L is

called a sublattice of L. A sublattice of Zn is called an integer lattice.

From here onward, we assume that all lattices are full rank, i.e., n = m. In this case,

a lattice is a discrete additive subgroup of Rn whose R-span is Rn; as such, it defines the

quotient group Rn/L of lattice cosets x+ L for x ∈ Rn.

Definition 2.13 (Determinant). The determinant of a lattice L = L(B) ⊂ Rn generated

by B ∈ Rn×n is given by

det(L) := |det(B)| .

Note that the determinant of a lattice is invariant under the choice of basis, by the

above-mentioned relationship between the bases of a lattice.

Definition 2.14 (Dual Lattice). The dual lattice of L ⊂ Rn is

L∗ := {x ∈ Rn : ∀ v ∈ L, ⟨v,x⟩ ∈ Z}.

Any basis B ∈ Rn×n for L = L(B) has a unique dual basis B∗ ∈ Rn×n that satisfies

(B∗)TB = Im. This B
∗ is a basis for L∗ = L(B∗).

Definition 2.15 (Successive Minima). For any positive integer k, the k-th successive mini-

mum of a lattice L ⊂ Rn with respect to a specified (quasi)norm is

λk(L) := inf{r > 0 : B(0, r) contains k linearly independent vectors},

10

where B(0, r) is the ball of radius r centered at the origin (in the (quasi)norm). In particular,

λ1(L) is the length of any shortest non-zero vector in L.

Definition 2.16 (Unique Closest Lattice Vector). For any lattice L ⊂ Rn and vector v ∈ Rn

whose distance from L is less than λ1(L)/2, we denote the unique closest lattice vector to v

by κL(v).

A natural method to construct a lattice from a linear code was introduced in [BS83].

Given an length-n code over a finite field of size prime p, this construction first embeds the

codewords into Euclidean space by mapping them to points in the hypercube [0, p)n, then

tiles Rn with copies of this set of points.

Definition 2.17 (Construction A Lattice). For any positive integer n, prime p, and linear

code C ⊆ Fn
p , let C̃ ⊂ Zn denote the set of vectors obtained by lifting the codewords in

C to the integers using the natural identification of the elements of Fp with the integers

{0, 1, . . . , p− 1} ⊂ Z. The Construction A lattice associated with C is

LA(C) := C̃ + pZn ⊆ Zn .

When it is clear from context, we often drop the tilde and implicitly associate the code C
with its representative set C̃.

This construction can be generalized to construct a lattice from a tower of nested linear

codes instead of a single code. The original definition was given in [CS88], but here we give

a simpler formulation that was more recently defined in [MKO18].

Definition 2.18 (Construction D Lattice). For any positive integer n, prime p, and tower

of nested linear codes Cℓ ⊆ · · · ⊆ C1 ⊆ C0 = Fn
p , where Ci is a [n, ki, di]p-code for every i ∈ [ℓ],

define the upper-triangular matrix

G :=


Gℓ

Gℓ−1
...

G0

 ∈ Fn×n
p ,

such that the diagonal entries are all 1, G0 consists of a full-rank identity matrix in the

right-most block and zeros in all other entries, and the rows of Gℓ, . . . ,Gi generate Ci for
every i ∈ [ℓ]. Scale the block matrices and use the natural identification of Fp with the

11

integers to define the matrix

B :=


Gℓ

pGℓ−1
...

pℓG0

 ∈ Zn×n.

The Construction D lattice is the lattice generated by this basis matrix B:

LD({Ci}i∈[ℓ]) := L(B) ⊂ Rn .

For a real r > 0, positive integer L, and distance function d(·, ·), we say that a lattice

L ⊂ Rn is (r, L)-list-decodable if, for any vector y ∈ Rn, there are at most L lattice vectors

within distance r of y, i.e., |{x ∈ L : d(x,y) ≤ r}| ≤ L.

2.7 Computational Lattice Problems

The following two problems are considered to be the most important computational lattice

problems.

Definition 2.19 (SVP). The Shortest Vector Problem, denoted SVP, is the search problem

defined as: Given a basis matrix B for a lattice L = L(B) ⊂ Rn, output a shortest non-zero

lattice vector, i.e., an x ∈ L \ {0} such that ∥x∥ = λ1(L).

Definition 2.20 (CVP). The Closest Vector Problem, denoted CVP, is the search problem

defined as: Given a basis matrix B for a lattice L = L(B) ⊂ Rn and target vector t ∈ Rn,

output a lattice vector closest to the target, i.e., an x ∈ L such that ∥x− t∥ = dist(L, t).

We will focus on the following variants of these problems, specifically in Chapter 3.

Definition 2.21 (GapSVP). For any approximation factor γ ≥ 1, the γ-approximate Shortest

Vector Problem, GapSVPγ, is the decision problem defined as: Given an instance (B, d)

consisting of a basis B of a lattice L = L(B) ⊂ Rn and distance parameter d > 0, with the

promise that either λ1(L) ≤ d or λ1(L) > γ · d, output

- YES if λ1(L) ≤ d, or

- NO if λ1(L) > γ · d.

12

Definition 2.22 (BDD). For any promise factor γ ∈ (0, 1
2
), the Bounded Distance Decoding

problem, BDDγ, is the promise search problem defined as: Given a basis B of a lattice

L = L(B) ⊂ Rn and a target vector v ∈ Rn with the promise that dist(v,L) < γ · λ1(L),
output the unique lattice vector closest to v, i.e., the x ∈ L such that ∥v − x∥ < γ · λ1(L).

Note that the upper bound on the factor α < 1
2
guarantees the existence of a unique

solution.

2.8 Fourier Analysis

In this section we recall some basics of Fourier analysis, restricted to well-behaved func-

tions. Let f : Rn → C be a (Borel) measurable function that satisfies
∫
Rn |f(x)| dx <∞. Its

Fourier transform f̂ : Rn → C is defined as

f̂(w) :=

∫
Rn

f(x) · exp(−2πi ⟨x,w⟩) dx .

It satisfies the following standard properties, which follow by routine calculations.

Lemma 2.23 (Multiplicativity). For any function f as above, f̂k = f̂ k (where the exponent

notation is as defined in Equation (2.1)).

Lemma 2.24 (Time-scaling property). For any function f as above and real s ̸= 0,

f̂s(w) = sn · f̂1/s(w) .

Lemma 2.25 (Time-shift property). For any function f as above and c ∈ Rn, let g(x) =

f(x− c). Then

ĝ(w) = f̂(w) · exp(−2πi ⟨w, c⟩) .

We say that f is nice if it satisfies conditions that are sufficient for the following formula

to hold, e.g., those given in [Ser73, pages 106–107]. All of the specific functions f we use in

this work are easily seen to be nice.

Lemma 2.26 (Poisson Summation Formula (PSF)). For any lattice L and nice function f ,

f(L) = det(L∗) · f̂(L∗) .

We will use a more general version of the PSF for lattice cosets.

13

Lemma 2.27 (Generalized PSF). For any lattice L ⊂ Rn, nice function f , and y ∈ Rn,

f(y + L) = det(L∗) ·
∑
w∈L∗

f̂(w) · exp(2πi ⟨w,y⟩) .

Proof. Define the function g(x) := f(x+ y). By Lemmas 2.25 and 2.26,

f(y + L) = g(L)

= det(L∗) · ĝ(L∗)

= det(L∗) ·
∑
w∈L∗

ĝ(w)

= det(L∗) ·
∑
w∈L∗

f̂(w) · exp(2πi ⟨w,y⟩) .

2.9 Probability and Distributions

If a random variable X has distribution ϕ over its support space, we often use the short-

hand notation X ∼ ϕ. We use N(µ, σ2) to denote the standard normal distribution over the

real numbers with mean µ and variance σ2.

Lemma 2.28 (Chebyshev’s Inequality). For any random variable X with expected value

µ = E[X] and finite variance Var[X], and γ > 0,

Pr
[
|X − µ| ≥ γ

]
≤ Var[X]

γ2
.

The following corollary will be useful for our reductions in Chapter 3.

Lemma 2.29. For any p ∈ [0, 1], let Y1, . . . , Yt be pairwise independent Bernoulli random

variables over {0, 1} such that Pr [Yi = 1] = p for all i ∈ [t]. Then for any c > 0,

Pr

[∣∣∣∣∣
t∑

i=1

Yi − t · p

∣∣∣∣∣ ≤ ctp

]
≥ 1− 1

c2tp
.

Proof. Define Y = Y1+ · · ·+Yt. Its expected value is E[Y] = tp and its variance is Var[Y] =

tp(1− p). By the Chebyshev inequality (Lemma 2.28),

Pr [|Y − tp| > ctp] <
tp(1− p)

c2t2p2
=

1− p

c2tp
≤ 1

c2tp
.

14

For a finite sequence of values X1, . . . , Xn ∈ R, we denote their average by Avgi[Xi] :=
1
n

∑n
i=1 Xi. We use the following special case of the well-known Hoeffding (lower-)tail bound

in Chapter 5.

Lemma 2.30 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent identically distributed

random variables in [0, 1] with common expectation µ = E[Xi]. Then for any γ ≥ 0,

Pr
[
Avg

i
[Xi] ≤ µ− γ

]
< exp(−2γ2n) .

Definition 2.31 (Statistical Distance). For any set of outcomes X, collection of events F ,
and two continuous probability distributions with probability density functions ϕ1 and ϕ2,

the statistical distance (a.k.a total variation distance) between ϕ1 and ϕ2 is

∆(ϕ1, ϕ2) := sup
A∈F
{|ϕ1(A)− ϕ2(A)|} .

In particular, when X = Rn this is ∆(ϕ1, ϕ2) =
1
2

∫
Rn |ϕ1(x)− ϕ2(x)| dx.

If X1 and X2 are random variables with distributions ϕ1 and ϕ2, respectively, we define

∆(X1, X2) := ∆(ϕ1, ϕ2). Note that, by definition, the statistical distance satisfies the triangle

inequality. Another important property is that statistical distance does not increase under

the application of any function, as formalized below.

Fact 2.32 (adapted from [Vad12, Lemma 6.3]). For any random variables X1 and X2 with

probability distributions ϕ1 and ϕ2, respectively, and any function f (whose domain is com-

patible),

∆(f(X1), f(X2)) ≤ ∆(X1, X2) .

A useful consequence of this fact is that for any algorithm A, the success probability of

A on X1 differs from that on X2 by at most ∆(X1, X2).

Definition 2.33 (Gaussian Function). The Gaussian function is ρ : Rn → R, given by

ρ(x) := exp(−π∥x∥2) .

Using function notation from Section 2.1, for any y ∈ Rn and width parameter s > 0, we

define ρs,y(x) := ρs(x− y). For simplicity, we denote ρ := ρ1.

Note that while we use this Gaussian function in both Chapters 3 and 5, we make use

of this specific notation in Chapter 3 for convenience, since we do not use more general

functions there as in Chapter 5.

15

Definition 2.34 (Discrete Gaussian). For any countable subset A and width s > 0 for which

ρs(A) converges, DA,s : A→ R is the discrete Gaussian distribution on A defined by

DA,s(x) :=
ρs(x)

ρs(A)
.

Definition 2.35 (Distribution Ψγ). For any positive γ ∈ R, the distribution Ψγ : T→ R is

defined by

Ψγ(r) :=
1

γ

∑
k∈Z

ργ(r − k) .

In particular, if X is distributed according to Ψγ and Z has distribution N(0, γ2/(2π)), then

X is the image of Z modulo 1.

An important property that will be used in Chapter 3 is that Ψα does not change much

under a small change in the width parameter α. In particular, a small scaling of α to β gives

an upper bound on the ratio between the probability density functions corresponding to Ψα

and Ψβ.

Lemma 2.36. For any α > 0 and ε > 0 defining β := α(1 + ε), let gα and gβ denote the

probability density functions for distributions Ψα and Ψβ, respectively. Then for any x ∈ R,

gα(x)

gβ(x)
≤ 1 + ε =

β

α
.

Proof. Suppose X and X ′ are distributed according to Ψα and Ψβ, respectively. By def-

inition, X and X ′ are the images of some Z and Z ′ with distribution N(0, α2/(2π)) and

N(0, β2/(2π)), respectively, under modulo 1. Then the ratio of the probability density func-

tions fα and fβ is the same as the ratio of the probability density functions of Z mod 1 and

Z ′ mod 1. By definition of β and positivity of ε,

gα(x)

gβ(x)
=

exp(−π(x/α)2)/α
exp(−π(x/β)2)/β

= (1 + ε) · exp
(
− π

α2
· x2 ·

(
1− 1

(1 + ε)2

))
≤ 1 + ε.

The inequality follows from the observation that the exponential factor is a non-zero width-

scaling of the Gaussian function ρα, which is bounded above by 1.

We prove a multiplicative analog of Fact 2.32 for this ratio of probability density functions.

Lemma 2.37. Let X and Y be continuous random variables over some universe U with

probability density functions gX and gY , respectively, such that for some fixed δ > 0, their

ratio satisfies gX(x)/gY (x) ≤ δ for all x. Then for any invertible function f : U → V and

16

S ⊆ V ,
Pr[f(X) ∈ S]

Pr[f(Y) ∈ S]
≤ δ .

Proof. Consider the ratio Pr[X ∈ T]/Pr[Y ∈ T] over all sets T ⊆ U . This is maximized by

the set of all elements for which the ratio of probabilities is positive, i.e

T ∗ :=
{
u ∈ U :

Pr[X = u]

Pr[Y = u]
> 0
}
.

Then by definition of T ∗ and the hypothesis, we have

Pr[f(X) ∈ S]

Pr[f(Y) ∈ S]
=

Pr[X ∈ f−1(S)]

Pr[Y ∈ f−1(S)]
≤ Pr[X ∈ T ∗]

Pr[Y ∈ T ∗]
=

∫
T ∗ gX(x) dx∫
T ∗ gY (x) dx

≤ δ .

This statement can easily be extended to a randomized function f . Consequently, for

any algorithm A, the success probability of A on X differs from that on Y by at most a

multiplicative factor of δ. We will use Lemmas 2.36 and 2.37 in Chapter 3.

2.10 Lattice Smoothing & Roughness

In this section, we describe two useful lattice quantities that will appear throughout this

thesis. For any lattice L, one can show that ρt(L) converges for all t > 0. In particular, the

map s 7→ ρ1/s(L \ {0}) is a strictly decreasing continuous map on the positive reals which

approaches 0 as s grows, and approaches∞ as s approaches 0. This enables us to define the

following parameter, which was originally introduced in [MR04].

Definition 2.38 (Smoothing Parameter). For any lattice L ⊂ Rn and ε > 0, the smoothing

parameter of L with respect to ε is

ηε(L) := inf{s > 0 : ρ1/s(L∗ \ {0}) ≤ ε} .

This is the smallest parameter s that makes the function fs(y+L) sufficiently “smooth” as

a function of y.

By the above observation on the map s 7→ ρ1/s(L \ {0}), the infimum in the definition

above can be achieved with equality. In fact, this map is a bijection over the positive real

numbers whose inverse is the map ε 7→ ηε(L).

17

Lemma 2.39. For any lattice L ⊂ Rn, ε > 0, and scalar c > 0,

c · ηε(L) = ηε(cL) .

Proof. By the properties of the Gaussian function and the fact that the dual of a scaled

lattice satisfies (cL)∗ = c−1L∗,

c · ηε(L) = inf{c · s > 0 : ρ1/s(L∗ \ {0}) ≤ ε}

= inf{t > 0 : ρc/t(L∗ \ {0}) ≤ ε}

= inf{t > 0 : ρ1/t(t
−1L∗ \ {0}) ≤ ε}

= ηε(cL) .

Lemma 2.40 ([Reg09, Claim 2.13]). For any lattice L ⊂ Rn and ε > 0,

ηε(L) ≥
√

ln(1/ε)

π
· 1

λ1(L∗)
≥
√

ln(1/ε)

π
· λn(L)

n
.

Lemma 2.41 (adapted from [GPV08, Lemma 3.1]). For any lattice L ⊂ Rn with basis

vectors b1, . . . ,bn and ε > 0,

ηε(L) ≤ max
i∈[n]
{∥bi∥} ·

√
ln(2n(1 + 1/ε))

π
.

We remark that the original upper bound in [GPV08] is tighter than the one above. This

is because the maximum is taken over the Gram-Schmidt orthogonalization of the basis

vectors, b̃1, . . . , b̃n, which satisfy ∥b̃i∥ ≤ ∥bi∥ for all i ∈ [n]. Furthermore, this quantity is

minimized over all possible bases B of the lattice.

Lemma 2.42 (adapted from [Cai98, Theorem 3.2]). For any lattice L ⊂ Rn with basis

vectors b1, . . . ,bn,
1

λ1(L∗)
≤ max

i∈[n]
{∥bi∥} .

The above lower bound is looser than the original result in [Cai98]. Similar to the previous

lemma, we use the upper bound ∥b̃i∥ ≤ ∥bi∥ for all i ∈ [n], which yields a weaker bound

than the one given by the Gram-Schmidt orthogonolization of the basis vectors minimized

over all possible bases of the lattice. For our purposes, the weaker versions of these bounds

are sufficient.

18

For widths greater than the smoothing parameter, the output of the Gaussian function

for any lattice coset can be bounded by the determinant of the dual lattice and a power of

the width parameter.

Lemma 2.43 ([Reg09, Claim 3.8]). For any lattice L ⊂ Rn, c ∈ Rn, ε > 0, and r ≥ ηε(L),

ρr(c+ L) ∈ rn det(L∗) · (1− ε, 1 + ε) .

For the functions in Chapter 5, we require the following properties of f .

Assumption 2.44. The function f has range [0, 1] and is nice, and f̂ is non-negative real

with f̂(0) > 0.

Because f is real, its Fourier transform is conjugate symmetric, i.e., f̂(−w) = f̂(w)∗ for

all w, where the star denotes complex conjugation. Since f̂ is also real, this implies that it

is symmetric, i.e., f̂(−w) = f̂(w). Finally, note that if f satisfies this assumption, then so

does its multiplicative extension fk.

For these kinds of functions, we introduce an important Fourier-analytic quantity that

plays an important role in our analysis in Chapter 5. We adopt the name “roughness”

because it is the functional inverse of the smoothing parameter defined above.

Definition 2.45 (Roughness). For a function f , lattice L ⊂ Rn, and real s > 0, the

roughness is defined as

εL,s :=
f̂s(L∗ \ {0})

f̂s(0)
=

f̂s(L∗)
f̂s(0)

− 1 ≥ 0. (2.2)

More generally, for a (linear) subspace H of Rn, the H-roughness is defined as

εL,s(H) :=
f̂s(L∗ \H⊥)
f̂s(L∗ ∩H⊥)

=
f̂s(L∗)

f̂s(L∗ ∩H⊥)
− 1 ≤ εL,s(Rn) = εL,s. (2.3)

Here both inequalities follow from the non-negativity of f̂s.

The following bounds the output of any function f for a lattice coset in terms of the dual

lattice and roughness. Note the close similarity to Lemma 2.43 above.

Lemma 2.46 (adapted from [MR07, Lemmas 2.9 and 4.1]). For any lattice L ⊂ Rn, real

s > 0, and subspace H of Rn defining roughness ε := εL,s(H), and any y ∈ H,

fs(y + L) ∈ det(L∗) · f̂s(L∗ ∩H⊥) · [1− ε, 1 + ε] ,

19

with equality against the upper bound when y = 0. In particular, fs(y+L) ∈ fs(L) · [1−ε1+ε
, 1].

Proof. By the generalized PSF (Lemma 2.27),

fs(y + L) = det(L∗) ·
∑
w∈L∗

f̂s(w) · exp(2πi ⟨w,y⟩)

= det(L∗) ·
(
f̂s(L∗ ∩H⊥) +

∑
w∈L∗\H⊥

f̂s(w) · exp(2πi ⟨w,y⟩
)

= det(L∗) ·
(
f̂s(L∗ ∩H⊥) +

∑
w∈L∗\H⊥

f̂s(w) · cos(2π ⟨w,y⟩
)
.

The last equation follows from the symmetry of f̂s and by pairing each (non-zero) element

of L∗ \H⊥ with its negation, which cancels out the imaginary part of exp(2πi ⟨w,y⟩).
Now observe that f̂s(w)·cos(2π ⟨w,y⟩) ∈ [−f̂s(w), f̂s(w)], with equality against the upper

bound for y = 0, because f̂s is non-negative. The claim then follows by the definition of

roughness εL,s(H).

20

CHAPTER 3

Learning With Errors

Based on joint work with Divesh Aggarwal and Leong Jin-Ming in [ALV25].

The Learning with Errors (LWE) problem has become one of the most important com-

putational problems in post-quantum cryptography and computational complexity over the

last two decades. Since Regev introduced this problem in 2005 [Reg09], the LWE problem

has been used as the basis of a wide variety of cryptographic primitives, as well as a tool

for proving hardness results in learning theory [KS09]. The LWE problem is the task of

recovering a secret vector from a set of noisy linear equations (see Definition 2.9 for the

formal definition). It can also be seen as the problem of decoding a random linear code. In

particular, given an input consisting of a uniformly random matrix m × n matrix A with

entries in Zp and the vector b := As + e determined by a secret uniformly random vector

s and short error vector e sampled from a Gaussian distribution, the goal is to output the

secret vector s. Here the positive integer p is called the modulus, n is the dimension of this

LWE problem, and m is the number of samples (polynomial in the dimension n). In Regev’s

seminal work, he relates LWE to worst-case lattice problems that form the foundation of

lattice-based cryptography.

Lattice Problems. The two most important computational lattice problems are the Short-

est Vector Problem (SVP) and the Closest Vector Problem (CVP). In SVP, one is given a

basis for a lattice and asked to output a shortest non-zero lattice vector. In the approxima-

tion variant of SVP, denoted by γ-SVP for some approximation factor γ ≥ 1, the goal is to

output a short non-zero lattice vector whose length is at most γ times the shortest lattice

vector length. In CVP, one is given a target vector and lattice basis and asked to output a

closest lattice vector to the target vector. Similarly, in its approximation variant γ-CVP, the

goal is to output a lattice vector whose distance from the target vector is at most γ times the

shortest distance between the target vector and the lattice. It is known how to reduce SVP

21

to CVP in polynomial time, while preserving the dimension, rank, and approximation fac-

tor [GMSS99]. A closely related problem to CVP is the Bounded Distance Decoding (BDD)

problem, denoted by BDDγ for some promise factor γ < 1
2
. This is a promise problem in

which the goal is to solve CVP under the guarantee that the distance of the target from the

lattice is at most γ times the minimum distance between lattice points.

These computational lattice problems, among others, are crucial because of their associ-

ation with lattice-based cryptography. Specifically, the security of numerous cryptographic

systems such as those in [Ajt96, MR04, Reg06, MR09, Reg09, Gen09, BV14] relies on the

complexity of solving lattice problems to within a polynomial approximation factor. Aside

from their importance in designing cryptosystems, algorithms for solving lattice problems

have found applications since the 1980s in cryptanalytic tools [Sha85, Bri83, LO85], algo-

rithmic number theory [LLL82], and convex optimization [Kan87, FT87].

Algorithms for Lattice Problems. Algorithms for CVP and SVP have been designed

and studied extensively for decades. Kannan proposed an enumeration algorithm [Kan87]

for CVP and hence for all lattice problems, with a time complexity of nO(n) and space

requirement of poly(n) in the lattice dimension n. Micciancio and Voulgaris introduced a

deterministic algorithm for CVP with a time complexity of 22n+o(n) and space requirement

of 2n+o(n) [MV13]. A few years later, Aggarwal, Dadush, Regev, and Stephens-Davidowitz

[ADRS14, ADRS15] presented the current fastest known algorithm for SVP and CVP, which

has a time and space complexity of 2n+o(n). The best-known and proven runtime for solving

these problems up to approximation factor γ = nc for constant c ≥ 0 is approximately

2n/(c+1). For the current state-of-the-art algorithms, we refer the reader to [ALS20].

Hardness of Lattice Problems. There are many results for the hardness of γ-CVP and

γ-SVP for various approximation factors γ and distances measured in various ℓp norms

[vEB81, DKRS03, Din02, Kho05, HR07, Mic12], though we only focus on the Euclidean (ℓ2)

norm for this work. γ-CVP is known to be NP-hard for nearly-polynomial approximation

γ = nc/ log logn for some constant c > 0 under deterministic reductions [DKRS03]. Solving γ-

SVP for such approximation factors cannot be done in polynomial time under the assumption

that NP ̸⊆ RSUBEXP [HR07]. Exact γ-SVP (where γ = 1) was shown to be NP-hard under

randomized reductions [Ajt98] and unsolvable in polynomial time for constant approximation

factors under the assumption that NP ̸⊆ RP [Kho05]. Through a series of works, Aggarwal,

Bennett, Golovnev, and Stephens-Davidowitz [BGS17, ASD18, ABGSD21] demonstrated

that approximating CVP and SVP to a factor γ slightly greater than 1 is not achievable in

time 2o(n) under variants of the Exponential Time Hypothesis. It remains an open problem

22

to prove NP-hardness of γ-SVPunder deterministic reductions, even for the exact version.

Worst-case to Average-case Reduction for LWE. The best known algorithm that

solves LWE for dimension n and modulus p runs in time pO(n/ logn) [BKW00]. The decision

variant of LWE is the one most directly related to the security of lattice-based cryptography.

In decision-LWE, the goal is to distinguish between an LWE instance (like the vector b

described above) and a uniformly random sample from Zm×(n+1)
p . Regev gave a polynomial-

time reduction from BDD to decision-LWE [Reg09]. He also gave a quantum polynomial-time

reduction from a decision variant of γ-SVP, known as GapSVPγ, to BDD for γ polynomial

in the dimension of the lattice. In a subsequent work, Peikert [Pei09] gave a fully classical

reduction from GapSVPγ to decision-LWE, albeit with the modulus p becoming exponential

in the dimension n. Later, Brakerski and others [BLP+13] gave a reduction from LWE with

dimension n and modulus p exponential in n to LWE with dimension n2 and modulus p

polynomial in n, thus allowing the modulus to shrink from exponential to polynomial.

This sequence of classical reductions provides a polynomial-time reduction from lattice

problems, namely GapSVP and BDD, of dimension n to decision-LWE of dimension n2 with

modulus p polynomial in n. As a consequence, this means that even if the current best

known algorithms for BDD or GapSVP are assumed to be the fastest possible, this reduction

only says that decision-LWE in dimension n cannot be solved in faster than 2Ω(
√
n) time. This

is a much worse lower bound than one would expect based on the state-of-the-art algorithms

for solving LWE [BKW00]. This leads us to the following natural question.

Question 3.1. Is there a tight reduction from worst-case lattice problems (such as BDD) to

LWE that gives a tighter lower bound on the runtime for solving LWE?

3.1 Alternative Measure of Computational Hardness

Cryptographic security models often assume that all possible adversaries are computa-

tionally bounded, relative to the state-of-the-art capabilities of modern computers. Often

when a cryptographic scheme is declared to be 256-bit secure, we intuitively understand that

the fastest algorithm for successfully breaking the cryptosystem runs in 2256 units of time.

What we typically require, however, is that any algorithm that succeeds in attacking the

cryptosystem with probability more than 2−256 cannot do so in a “reasonable” amount of

time.

Unpredictability Entropy. Motivated by this discrepancy, Aggarwal and Maurer [AM11]

proposed a different way of studying the complexity of a computational search problem.

23

They introduced the concept of unpredictability entropy for a computational problem, which

is defined as follows. If p is the maximum success probability of a probabilistic polynomial-

time (PPT) algorithm that solves the problem, the unpredictability entropy of the problem

is log2(
1
p
).

Two closely related properties of a search problem, witness compression and oracle com-

plexity, are also studied in [AM11]. A search problem P is said to have witness compression

w if there is a PPT reduction from P to another search problem Q such that the problem

Q has a solution (or witness) of length w. The oracle complexity of problem P is defined

as the number of arbitrary YES/NO questions needed to obtain a solution to P in prob-

abilistic polynomial time. It was shown in [AM11] that unpredictability entropy, witness

compression, and oracle complexity are all equivalent up to lower order additive terms. The

common characteristic that unifies these quantities is that they all quantify the hardness of

a computational problem in bits.

The authors of [AM11] also gave a straightforward polynomial-time algorithm for both

SVP and CVP that has a success probability of 2−n
2/4−o(n2), showing that both problems

have unpredictability entropy/witness compression/oracle complexity at most n2/4 + o(n2).

This algorithm is a straightforward adaptation of the LLL algorithm [LLL82] and Babai’s

nearest plane algorithm [Bab86]. If the use of LLL in this algorithm is replaced with the

slide reduction algorithm from [GN08, ALNSD20] with block length O(log n), this algorithm

still runs in polynomial time and the search space is reduced, thereby increasing the success

probability to 2−Θ(n2/ logn). Despite the various algorithmic techniques available for solving

lattice problems, none of these methods seem to improve this algorithm further if we restrict

ourselves to probabilistic polynomial time, even if we consider approximation variants of

these lattice problems with approximation factor γ polynomial in the lattice dimension n.

Moreover, the close relationship between BDDγ′ and γ-SVP where the approximation factors
1
γ′ and γ are both polynomial in n [LM09] suggests that it is unlikely for a polynomial-time

algorithm for BDD to achieve a significantly better success probability than the current best

algorithms. With this in mind, it is reasonable to conjecture the following.

Conjecture 3.2. For any constants c, c′ > 0, there exists a constant κ = κ(c, c′) > 0 such

that no algorithm can solve BDD1/γ, γ-SVP, and γ-CVP on an arbitrary n-dimensional lattice

for approximation factor γ = nc in time nc′ with success probability better than 2−n
2/κ logn.

For solving search-LWE for modulus p and dimension n in polynomial time, there is a

trivial lower bound on the success probability of at least p−n. This can be obtained by

guessing the secret vector s ∈ Zn
p uniformly at random. This observation leads us to the

following natural question, which offers a new perspective on the worst-case to average-case

reductions for LWE.

24

Question 3.3. Assuming Conjecture 3.2, is there a lower bound close to p−Ω(n) on the success

probability of solving search-LWE via a polynomial-time algorithm?

We answer this question in the affirmative.

Since the security of cryptosystems is based on the hardness of solving decision problems,

we formulate the measure of hardness of a decision problem in terms of the success probability

of the best PPT algorithm that “solves” it. Defining what it means to solve a probabilistic

decision problem is the critical part of this framework.

One-Sided Error. Question 3.3 has been well-studied in the context of average-case NP-

hard problems, which any PPT algorithm is expected to be able to solve only with small

probability. Some previous works (such as [PP10] and the references therein) have explored

the realm of one-sided error probabilistic polynomial-time (OPP) algorithms for NP-hard

decision problems. These work under the assumption that when the algorithm is presented

with a NO instance, it always outputs NO (with probability 1), while for a YES instance,

the algorithm outputs YES with a small success probability α.

For problems like decision-LWE, whose inputs are chosen according to a distribution,

we cannot hope to unfailingly output NO given a NO instance with probability 1. For

decision-LWE, this is because a NO instance is a random element which looks like a YES

instance (for some secret vector) with non-zero probability. Despite this issue, the notion

of OPP algorithms can be reasonably adapted to these problems in the following way: Let

α, β ∈ [0, 1] be two parameters such that α≫ β . We call an algorithm an (α, β)-solver for

decision-LWE if the algorithm outputs YES with probability at least α when given a YES

instance, and probability at most β when given a NO instance. This notation enables us to

formulate the following natural question.

Question 3.4. Assuming that no PPT algorithm can succeed in solving search-LWE with

probability α, can we prove that an (α′, β′)-solver for the corresponding decision-LWE prob-

lem with α′ ≈ α and β′ ≪ α′ does not exist?

We answer this question in the affirmative.

Our Contributions. We show that if no PPT algorithm can solve BDD for an n-

dimensional lattice with success probability greater than O(q), then no PPT algorithm can

solve search-LWE for dimension n with success probability greater than O(q). In particular,

under Conjecture 3.2, we informally state our first main result as follows.

Theorem 3.5. (informal) If no PPT algorithm can solve BDDγ for gap γ ∈ (0, 1
2
) and rank

n with success probability greater than 2−n
2/κ logn for some κ > 0, then no PPT algorithm

25

can solve search-LWE for dimension n and polynomial modulus p even for a binary secret

vector with success probability 2−n
2/κ logn.

Note that the above statement can easily be extended to p-ary secret vectors that are

uniformly distributed over Zn
p using a standard randomization of the secret. We show this

explicitly in Section 3.2.3. In the reduction for Theorem 3.5, there is some constant-bounded

loss in success probability which we will quantify explicitly. For a worst-case problem like

BDD, we can iterate the reduction algorithm a constant number of times to recover the same

success probability and still have a polynomial runtime. The complete and formal statement

of Theorem 3.5 can be found in Theorem 3.8.

We emphasize here that while our reductions are adaptations of similar reductions in the

literature, this adaptation to our alternative framework required great care, because limiting

the number of oracle calls made in the reductions is crucial. More precisely, for a reduction

from problem P to problem Q which makes k calls to a solver for problem Q, an upper

bound of δ on the success probability for solving problem P in polynomial time would imply

an upper bound of δ1/k on the success probability for solving problem Q in polynomial time.

So for our reductions, we needed to adapt known reductions, which make polynomially many

oracle calls, into reductions that make only one call to the oracle and then guess successfully

with a small probability. These reductions with a single oracle call are known as one-shot

reductions. This approach enables us to obtain meaningful bounds on the success probability

of polynomial-time reductions. Our results do not have any novel implication in the quantum

setting.

Our second main contribution is concretely relating the hardness of solving decision-LWE

to that of solving search-LWE using our new framework. In particular, we show that if no

algorithm can solve search-LWE on a lattice of rank n with modulus p in expected polynomial

time with success probability close to α, then there is no PPT algorithm that can solve

decision-LWE for the same dimension and modulus and answers correctly with probability

close to α, outputs ⊥ with probability 1 − α, and answers incorrectly with the remaining

tiny probability. This relies on the assumption that β is large and close to 1, which requires

the oracle B to be correct with high probability when it does not output ⊥. Intuitively,

this means that B admits defeat by outputting ⊥ far more often than it guesses the answer

incorrectly. Using this framework, we can informally state our second main result as follows.

Theorem 3.6. (informal) If no algorithm can solve search-LWE for modulus p polynomial

in the dimension n with success probability α in expected polynomial time, then no PPT

algorithm can solve decision-LWE for the same modulus p and dimension n that outputs a

correct answer with probability α and outputs ⊥ with probability 1− α.

26

To prove our second main result, we use a result by Levin [Lev12]. This result is an

improvement of the original Goldreich-Levin Theorem in [GL89] which gives a tight rela-

tionship between the success probability of finding a hard-core bit and that of inverting the

corresponding one-way function. In our work, we rigorously prove Levin’s result and gen-

eralise it from binary {0, 1} to Zp for all but a few values of p. This required considerable

care and can easily find applications elsewhere, so we consider it to be a contribution of

independent interest.

Note that the statement of Theorem 3.6 is in terms of expected polynomial time, which

is a crucial aspect of the Goldreich-Levin Theorem used in our reduction. Because the

runtime is polynomial only in expectation, we cannot directly combine this result with that

of Theorem 3.5.

We remark here that while the techniques used to prove our second main result are similar

to those used in [MM11], we do not require that the probability α of the decision-LWE oracle

answering correctly is non-negligible. Instead, we only require that α is sufficiently larger

than the probability δ of answering incorrectly. In particular, this means that both α and

δ can be exponentially small. In our work, we also explicitly quantify the loss in success

probability for each of our reductions.

A Note About Concurrent Works. There are two related and independent papers that

appeared at the same time as this work. Watanabe and Yasunaga in [WY25] study a related

notion of bit security in the context of hardness amplification. They present a variant of the

XOR lemma using a similar algorithm to ours that can output ⊥ in addition to a binary

output. Micciancio and Schultz-Wu in [MSW25] present a similar notion of bit security for

decision problems relevant to cryptography and propose a general way of unifying all such

measures. They introduce a measure of security that encompasses both computational and

statistical models and adversaries that are not necessarily computationally bounded. Our

measure of computational hardness restricted to polynomial-time algorithms can be seen as

a special case of the framework presented in [MSW25], but, to our knowledge, our close

study of LWE under this framework is entirely new.

Preliminaries. For this entire chapter, all distances and norms are Euclidean (ℓ2), all

lattices are full-rank, and all logarithms are in base 2 unless specified otherwise. We say

that a prime modulus p is polynomial in n if p = poly(n), meaning that p = O(nk) for some

positive constant k. We say that p is exponential in n if p = O(2poly(n)).

Definition 3.7 (mod-BDD). For any positive modulus p ∈ Z and approximation factor

γ ∈ (0, 1
2
), the Modulo-p Bounded Distance Decoding problem, BDDγ,p, is the search problem

27

defined as: Given a basis matrix B of a lattice L = L(B) ⊂ Rn and a target vector v ∈ Rn

with the promise that dist(v,L) < γ · λ1(L), output the unique coefficient vector modulo

p of the lattice vector closest to v, i.e., if x ∈ L is closest to v, the output should be

B−1x (mod p) ∈ Zn
p .

We formally state our results and prove them in the following sections. These reductions

are all (probabilistic) Turing reductions, so we do not specify this in our statements hereafter.

3.2 From BDD to Search-LWE

Theorem 3.8 (BDD→ Search-LWE). Let n ≥ 1 be an integer, ε ∈ (0, 1
24
) and δ > 3

4
be error

parameters, α ∈ (0,
√

ln(2n(1 + 1/ε))/π) a width parameter, p a prime modulus polynomial

in n, and γ ∈ (0, 1
2
) an approximation factor. Suppose there is a polynomial-time algorithm

B that solves LWEn,p,Ψα with success probability q. Then there is a (probabilistic) polynomial-

time algorithm A that, given oracle access to B, solves any BDDγ instance (B,v) specifying

a lattice L = L(B) ⊂ Rn and a target vector v ∈ Rn, as long as these satisfy

dist(L∗,v) ≤ γ · α

maxi∈[n]{∥bi∥}
·
√

π

ln(2n(1 + 1/ε))
,

with probability q(1 + δ)−3 − 6ε.

Remark 3.9. In particular, we consider Conjecture 3.2 and assume that q = 2−n/(κ logn) for

some κ > 0. Then setting ε = q/96 and δ = 1, we obtain

q(1 + δ)−3 − 6ε =
q

8
− q

16
= 2−4q = 2−n

2/(κ logn)−4 = 2−O(n2/ logn) .

So, Theorem 3.8 says that if no polynomial-time algorithm can solve BDDγ with probabil-

ity 2−O(n/ logn), then there is no polynomial-time algorithm for LWEn,p,Ψα with exponential

modulus p ≈ 2n that succeeds with probability 2−O(n/ logn).

Our proof consists of two parts and uses techniques inspired by Regev’s original reduction

in [Reg09]. First we give a one-shot reduction from BDD to a generalized LWE problem in

Section 3.2.1. Then we adapt Regev’s reduction from this generalized LWE problem to

search-LWE with exponential modulus in Section 3.2.2, using a multiplicative, rather than

additive, ratio of distributions. Finally, we reduce LWE with exponential modulus to binary

LWE with polynomial modulus in Section 3.2.3.

28

3.2.1 BDD to Generalised LWE

Consider the following generalised version of LWE, as introduced by Regev in [Reg09].

Definition 3.10 (Generalized LWE). For any integer n ≥ 1, prime modulus p, and family of

distributions D, the Generalized Learning with Errors problem, denoted LWEn,p,D, is defined

as: Given a polynomial number of samples from the distribution As,ϕ, specified by a secret

vector s ∈ Zn
p and distribution ϕ belonging to D, output s.

Note that any algorithm for this problem may know D, but does not know the specific

distribution ϕ. Furthermore, in any instance of this problem, the input samples all come

from the same distribution ϕ. For our proof, we are interested in case where the family of

distributions D is

Ψ≤α := {Ψβ : 0 < β ≤ α} .

To obtain the desired bound on the success probability, we minimize the number of oracle

calls in our reductions. In the original chain of reductions BDDγ → BDDγ,p → LWEn,p,Ψ≤α

in [Reg09], a total of n calls is made to the algorithm for BDDγ,p, each of which calls the

oracle for LWEn,p,Ψ≤α
one time. If we insist that the modulus is exponential p = 2n, then we

can simplify our analysis by allowing the BDDγ algorithm to call the BDDγ,p oracle exactly

once, thereby making a total of one call to the LWE oracle.

In our reduction from BDDγ to BDDγ,p, we call the BDDγ,p oracle once on the given BDDγ

instance of dimension n to obtain a coefficient vector that (ideally) corresponds to the closest

lattice vector to the given target v. We then shift the target vector v by this closest lattice

vector and scale this down by p. We then run Babai’s Nearest Plane Algorithm [Bab86] on

this shifted scaled vector as the target; this outputs a lattice vector within a factor of 2n of

the actual distance between the target and the lattice. The key insight here is that setting

the modulus to be exponential in the dimension n makes it easy for Babai’s algorithm to

find the exact desired lattice point, because the margin of error is larger than the search

space. We formalize this idea below.

Lemma 3.11 (BDD → Modulo-BDD). For any integer n ≥ 1, prime modulus p exponential

in n, and approximation factor γ ∈ (0, 1
2
), if there is a polynomial-time algorithm B that

solves BDDγ,p with success probability q, then there exists a polynomial-time algorithm A
that, given oracle access to B, solves BDDγ with success probability q.

Proof. The given BDDγ instance (B,v) specifies a lattice L = L(B) ⊂ Rn and target vector

v ∈ Rn that satisfy dist(L,v) < γ · λ1(L). Consider the following algorithm A:

29

Algorithm 1: BDD to Modulo-BDD Reduction

Input: BDDγ instance (B,v).

Output: Lattice vector x ∈ L.

Run B on (B,v) to get a vector z ∈ Zn
p .

Compute v′ := (v −Bz)/p.

Run Babai’s algorithm on (B,v′) to get a vector Bz′ ∈ L.
Output the vector B(pz′ + z).

Since the oracle B and Babai’s algorithm both run in time polynomial in lattice dimension

n, this algorithm runs in polynomial time.

Now we show that if B answers correctly, A will output a correct answer. If oracle B
succeeds, it outputs z = z (mod p) for some coefficient vector z = B−1x ∈ L, where x ∈ L
is a closest lattice vector to v. Then ∥v − x∥ = ∥v −Bz∥ < γ · λ1(L). The output of A is

correct if and only if ∥v−B(pz′ + z)∥ < γ · λ1(L), so it is enough to show that z = pz′ + z.

Babai’s algorithm [Bab86] guarantees that the output Bz′ satisfies

∥v′ −Bz′∥ ≤ 2n · dist(L,v′) ,

where the inequality follows from hypothesis on the modulus p > 2n. By definition, the

coordinates of z and z can only differ by a multiple of p, so (z− z)/p is a coefficient vector

in Zn. Then B((z− z)/p) ∈ L and dist(L,v′) ≤ ∥v′ −B((z− z)/p)∥. All together,

∥v′ −Bz′∥ < 2n · dist(L,v′) ≤ 2n · ∥v′ −B((z− z)/p)∥ = 2n

p
· ∥v −Bz∥ < γ · λ1(L) .

Therefore, the closest vector to v′ is B((z− z)/p), which gives z = pz′ + z as desired.

Finally, since the oracle B is correct with probability q and the algorithmA always answers

correctly when B succeeds, the success probability of algorithm A is at least q.

This exponential modulus p ≈ 2n will be reduced to a polynomial one in Section 3.2.3. Be-

fore presenting our second reduction, we introduce some intermediate results. The following

lemma bounds the statistical distance between two relevant distributions.

Lemma 3.12 (adapted from [Reg09, Corollary 3.10]). For any lattice L ⊂ Rn, vectors

w,u ∈ Rn, and reals r, s > 0 defining t := ∥(r∥w∥, s)∥, vector v ∼ Du+L,r, and error

e ∼ N(0, s2/(2π)) defining random variable X := ⟨w,v⟩ + e, and random variable Z ∼
N(0, t2/(2π)), if there exists an ε ∈ (0, 1

2
) such that ηε(L) ≤ rs/t, then

∆(X,Z) ≤ 4ε .

30

In particular, the distribution Φ of X modulo 1 satisfies ∆(Φ,Ψt) ≤ 4ε.

The algorithm in our second reduction requires additional data, namely samples from a

discrete Gaussian. We generate these samples using an explicit subroutine from [BLP+13] as

a black-box. This subroutine is an efficient algorithm that, given any lattice and sufficiently

large width parameter, outputs a sample from the specified discrete Gaussian distribution.

We restate their result below.

Lemma 3.13 (adapted from [BLP+13, Theorem 2.3]). There exists a (probabilistic)

polynomial-time algorithm DGS, that, given a basis B of a lattice L = L(B) ⊂ Rn, a

vector c ∈ Rn, and a real r satisfying

r ≥ max
i∈[n]
{∥bi∥} ·

√
ln(2n+ 4)

π
,

outputs a sample from the distribution Dc+L,r.

Lemma 3.14 (Modulo-BDD → Generalized-LWE). Let n ≥ 1 be an integer, ε ∈ (0, 1
24
),

α ∈ (0,
√
ln(2n(1 + 1/ε))/π) a width parameter, p a prime modulus, and k a positive integer

constant. Suppose there is a polynomial-time algorithm B that, given nk samples from As,Ψ≤α
,

solves LWEn,p,Ψ≤α
with success probability q. Then there is a (probabilistic) polynomial-time

algorithm A with oracle access to B that, for any approximation factor γ ∈ (0, 1
2
) and

r ≥ p ·max
i∈[n]
{∥bi∥} ·

√
ln(2n(1 + 1/ε))

γ · π
,

solves any BDDγ,p instance (B∗,x), where the lattice L∗ = L(B∗) ⊂ Rn and target vector x

satisfy dist(L∗,x) ≤ αp
√
γ/r, with success probability q − 6ε.

Proof. The lattice L∗ = L(B∗) specified by the given BDD instance has dual L = L(B) for

some corresponding basis B. By Lemma 2.42 and the upper bound on α,

r ≥ p

λ1(L∗)
·

√
ln(2n(1 + 1/ε))

γ · π
≥ α · p

λ1(L∗) ·
√
γ
.

By hypothesis and this lower bound on r, the instance (B∗,x) satisfies dist(L∗,x) ≤ γ·λ1(L∗),
and so is a valid input to BDDγ,p.

We define a subroutine that efficiently samples from a discrete Gaussian distribution. By

the upper bound ε < 1/24 and lower bound n ≥ 1, which imply 1/ε ≥ 2/n, and the upper

31

bound γ < 1
2
,

r ≥ max
i∈[n]
{∥bi∥} ·

√
ln(2n+ 4)

π

By Lemma 3.13, we can apply the DGS algorithm for this r, lattice L, and vector c = 0 to

generate samples with distribution DL,r.

Now we construct the reduction algorithm A. The idea behind this algorithm is to

use the target vector x to generate a polynomial number of samples from a distribution Φ

that is a good approximation of As,Ψβ
, for some width parameter β ≤ α and secret vector

s = (B∗)−1κL∗(x) (mod p). (Recall that κL∗(x) is the unique closest vector in the lattice L∗

to x defined in Definition 2.16). We then call the oracle B on these generated samples to

obtain the secret vector s with probability close to q.

Algorithm 2:Modulo-BDD to Generalized-LWE Reduction

Input: (B∗,x) such that dist(L∗,x) ≤ αp
√
γ/r.

Output: s ∈ Zn
p .

for i ∈ {1, . . . , nk} do
Run the DGS sampler to obtain a vector v← DL,r.

Compute a := B−1v mod p.

Sample some noise e← N(0, α2γ/(2π)).

Define b := ⟨x,v⟩ /p+ e mod 1.

Define sample Xi := (a, b).

end

Run B on X1, . . . , Xnk ∼ Φ to get a vector s ∈ Zn
p .

Output s.

Since the DGS sampling algorithm runs in polynomial time and is called a polynomial

number of times, algorithm A runs in polynomial time.

We claim that A generates a good approximation of samples from As,Ψβ
. Specifically, we

show that the statistical distance between the true distribution Φ of the generated samples

and the distribution As,Ψβ
for some β ≤ α is some small ε′. If the oracle B is given a

polynomial number of samples from As,Ψβ
, then it is guaranteed to find s with probability q.

If B succeeds, its output will be s = (B∗)−1κL∗(x) mod p, which is precisely the coefficient

vector of the closest lattice vector x ∈ L∗ modulo p. Hence, s is a solution to the given BDDγ,p

instance. But since the input samples given to B are from an approximate distribution Φ

that is ε′ away (in statistical distance) from the target distribution As,Ψβ
, by Fact 2.32, the

success probability suffers a loss of ε′. Therefore, A will succeed with probability q − ε′.

We prove our claim and show that ε′ = 6ε by analyzing the distributions of a and b for

any generated sample Xi. First we show that the distribution of a is close to uniform over

32

Zn
p . Let Y denote the distribution of a. Fix a ∈ Zn

p . Then

Pr[Y = a] = Pr
v←DL,r

[v = Ba mod p] (definition of a and Y)

=
ρr(pL+Ba)

ρr(L)
(Definition 2.34)

=
ρr/p(L+Ba/p)

ρr(L)
(rescaling by p)

∈ (r/p)n · det(L∗) · (1± ε)

rn · det(L∗) · (1± ε)
(Lemma 2.43)

=
1

pn
·
(
1− 2ε

1 + ε
, 1 +

2ε

1− ε

)
(rearranging).

Let U denote the uniform distribution over Zn
p and ρ ∈ [0, 1] be the fraction of values in Zn

p for

which Pr[Y] > Pr[U]. By definition of statistical distance, the above bounds on Pr[Y = a],

and the bounds on ε,

∆(Y ,U) = 1

2

∑
a∈Zn

p

|Pr[Y = a]− Pr[U = a]|

<
1

2

(
ρ · pn

(1

pn

(
1 +

2ε

1− ε

)
− 1

pn

)
+ (1− ρ) · pn

(1

pn

(
1− 2ε

1 + ε

)
− 1

pn

))

≤ max
ρ∈[0,1]

{
ρ · ε

1− ε
+ (1− ρ) · ε

1 + ε

}
≤ ε

1− ε

≤ 2ε .

Now we show that the distribution of b for any sample Xi is close to the corresponding

LWE distribution. We consider the marginal distribution of b conditioned on a. Define

x′ := x− κL∗(x). Then

⟨x,v⟩ /p+ e = ⟨κL∗(x),v⟩ /p+ ⟨x′,v⟩ /p+ e . (3.1)

By some simple algebraic manipulations and the fact that (B∗)T = B−1, the first summand

33

can be rewritten as

⟨κL∗(x),v⟩ = κL∗(x)
TBB−1v

= κL∗(x)
T
(
(B∗)−1

)T
B−1v

=
〈
(B∗)−1κL∗(x),B

−1v
〉

≡ ⟨s, a⟩ mod p

so the first term in Equation (3.1) satisfies ⟨κL∗(x),v⟩ /p ≡ ⟨a, s⟩ /p mod 1.

It remains to consider the second term in Equation (3.1). Since p is fixed and we condition

on a, the distribution DL,r of v is the same as the distribution DBa+pL,r. For any such v and

noise e sampled from N(0, α2γ/(2π)), let Z denote the distribution of ⟨x′,v⟩ /p + e mod 1.

Then

ηε(pL) = p · ηε(L) (Lemma 2.39)

< r · √γ (Lemma 2.41, hypothesis on r)

<
1

∥(1/r, 1/r)∥
(upper bound on γ, rearranging)

≤ 1

∥
(
(∥x′∥/p)/(α√γ), 1/r

)
∥

(since ∥x′∥ ≤ dist(L∗,x) ≤ αp
√
γ/r)

=
r · α√γ

∥(r∥x′∥/p, α√γ)∥
(rearranging).

By ∥x′∥ ≤ αp
√
γ/r and the upper bound γ < 1

2
, the denominator is bounded above by

β := ∥(r∥x′∥/p, α√γ)∥ ≤
√

α2γ + α2γ = α
√

2γ < α .

By Lemma 3.12, ∆(Z,Ψβ) ≤ 4ε for this β.

Therefore, by the triangle inequality, the statistical distance between Φ and As,Ψβ
for this

β ≤ α is ε′ = 2ε+ 4ε = 6ε as claimed.

An immediate corollary of this reduction is the following bound on the success probability

of any polynomial-time algorithm for BDD.

Corollary 3.15 (BDD → Generalized-LWE). Let n ≥ 1 be an integer, α ∈
(0,
√

ln(2n+ 4)/π) a width parameter, ϕ a distribution in the family Ψ≤α, p a prime modu-

lus, and ε ∈ (0, 1
24
). Suppose there exists a polynomial-time algorithm B that solves LWEn,p,ϕ

with success probability q. Then there is a polynomial-time algorithm A that, given oracle

access to B, solves BDDγ for any approximation factor γ ∈ (0, 1
2
) with success probability

34

q − 6ε.

We remark that the additive loss in success probability can be written as a multiplicative

factor in the following way:

q − ε′ = q
(
1− ε′

q

)
= q
(
1− 6ε

q

)
.

This quantity is only meaningful if q − ε′ ∈ (0, 1), which holds if ε ∈ (q − 1, q)/6. To

incur only a small loss, say q − ε′ = q/2, this requires ε = q/12. For our application (see

Remark 3.9), we are interested in the regime where q = 2−O(n/ logn), so taking such an ε gives

a valid explicit way to quantify the multiplicative loss in success probability.

3.2.2 Generalised LWE to Standard LWE

In this section, we give a reduction from a more general version of LWE to standard

search-LWE by adapting Lemma 3.7 from [Reg09] to work with multiplicative, rather than

additive, loss in success probability. In the reduction in [Reg09], Gaussian noise is iteratively

chosen from a discrete interval to optimize the noise in a way that guarantees a very high

success probability. Since we are concerned with polynomial-time adversaries and explicitly

quantify the success probability, we will only sample Gaussian noise from the interval once

in our reduction. Because we are limited to a single sample, we need to choose the interval

and parameters carefully.

Lemma 3.16 (Generalized-LWE → Search-LWE). For any integer n ≥ 1, width parameter

α > 0, prime modulus p, and constant ε >
√
3 − 1 ≈ 0.73205, if there is a polynomial-time

algorithm B that solves LWEn,p,Ψα with success probability q, then there is a (probabilistic)

polynomial-time algorithm A that, given oracle access to B, solves LWEn,p,Ψ≤α
with success

probability at least q(1 + ε)−3.

Proof. Suppose A is given nk samples, for some constant positive k ∈ Z, distributed accord-

ing to As,Ψβ
, for some 0 < β ≤ α. For notational convenience, define δ := (1 + ε)2 − 1 and

the set Z of integer multiples of δα2 between 0 and δ2α2, i.e.

Z :=
{
0, δα2, 2 · δα2, . . . , (⌊δ⌋ − 1) · δα2

}
.

By the lower bound ε >
√
3 − 1, we have δ > 2, so this set Z is well-defined and contains

|Z| = ⌊δ⌋ elements, where 2 ≤ |Z| < δ.

Consider the following algorithm A:

35

Algorithm 3: Generalized-LWE to Search-LWE Reduction

Input: Samples X1, . . . , Xnk ∼ As,Ψβ
.

Output: Secret vector s ∈ Zn
p .

Sample γ ← Z uniformly at random.

for i ∈ {1, . . . , nk} do
Denote (a, b) := Xi.

Sample some noise e← Ψ√γ.

Define Yi := (a, b+ e).

end

Run B on Y1, . . . , Ynk to get a vector s′ ∈ Zn
p .

Output s′.

Sampling and adding noise to nk samples is efficient, and the oracle B is called once, so

A runs in polynomial time.

The algorithm A is given samples of the form Xi = (a, b) = (a, ⟨a, s⟩ + e), where e has

distribution Ψβ for some unknown β ≤ α. Since the algorithm knows the value of α, it

adds noise from Ψ√γ with the aim of obtaining samples whose noise distribution is close to

Ψα. These generated samples then have the form Yi = (a, b + e) = (a, ⟨a, s⟩ + (e′ + e)) and

the noise e′ + e has distribution Ψσ for width σ :=
√

β2 + γ. We bound the approximation

error between the true noise distribution Ψσ and the target distribution Ψα to obtain a lower

bound on the total success probability of A.
Let γ′ be the smallest element of Z satisfying γ′ ≥ α2−β2. By the assumption 0 < β ≤ α

and the lower bound δ > 2, we have 0 ≤ α2 − β2 < α2 < (⌊δ⌋ − 1) · δα2, so there exists such

an element γ′ in Z that satisfies

γ′ ≤ α2(1 + ε)2 − β2 ≤ (⌊δ⌋ − 1)δα2 . (3.2)

Let σ′ :=
√
β2 + γ′ denote the noise distribution parameter for this particular element γ′,

and consider the ratio of the probability generating functions for Ψα and Ψσ′ . By Lemma 2.36

and Equation (3.2),

gα(x)

gσ′(x)
≤ σ′

α
=

√
β2 + γ′

α
≤
√

(1 + ε)2 = 1 + ε .

By Lemma 2.37, applying any function to this ratio cannot increase it. In particular, applying

the (randomized) function given by the probability that B succeeds when run on the samples

36

Yi generated with a specific noise distribution, by hypothesis we obtain

Pr[B succeeds for Ψα]

Pr[B succeeds for Ψσ′]
=

q

Pr[B succeeds for γ = γ′]
≤ 1 + ε .

So for this value γ′, the oracle B successfully outputs s′ = s with probability at least q/(1+ε).

By construction of the algorithm A, the total success probability of A is bounded below by

the product of the probability that γ = γ′ and the probability that B succeeds for this γ′.

Since |Z| < δ, the probability that γ′ is selected is greater than 1/δ. Therefore, the total

success probability of A is at least

q

1 + ε
· 1
δ
≥ q

(1 + ε)3
.

For our application, in which we assume that LWEn,p,Ψα can be solved with success proba-

bility q = p−n/(κ logn) for exponential modulus p ≈ 2n, we set ε = 1 in Lemma 3.16 to obtain

the following result.

Corollary 3.17 (Generalized-LWE → Search-LWE). For any integer n ≥ 1, prime modulus

p exponential in n, and width parameter α > 0, if no polynomial-time algorithm can solve

LWEn,p,Ψ≤α
with success probability 2−n/(κ logn)−3 for some constant κ > 0, then there is no

polynomial-time algorithm that can solve LWEn,p,Ψα with success probability 2−n/(κ logn).

3.2.3 Reducing the Modulus for Search-LWE

In this subsection, we show how to reduce our exponential modulus to a polynomial one.

To do this, we use a reduction from [BLP+13]. In their work, the authors study the trade-off

between the modulus and the dimension of decision-LWE instances. In particular, they give

a reduction from decision-LWE to decision-LWE that reduces the modulus arbitrarily, while

incurring a quadratic loss in the dimension and a small loss in success probability.

We observe that their result also gives a reduction from search-LWE to search-LWE, be-

cause theirs is a transformation reduction, meaning that it transforms the input and applies

the oracle to the result [BLP+13] to map one LWE instance to another. We restate their

results in the context of search-LWE.

Theorem 3.18 (adapted from [BLP+13, Theorem 4.1.]). For any positive integer n, width

α > 0 such that 1
α
is bounded by a polynomial in n. Then for some prime p = p(n) such

that both p and p
α
are nΘ(1), there is a polynomial-time, one-shot reduction from LWEn,2n,Ψα

to binLWEn2,p,Ψα
that preserves the success probability.

37

Now we give a trivial reduction from binLWE to LWE for the same dimension, modulus,

and noise distribution. Together with the reduction above, this allows us to reduce the

modulus from exponential in to polynomial in the dimension.

Lemma 3.19 (Binary-LWE → Search-LWE). For any positive integer n, prime modulus p,

and distribution ϕ over T, if there exists a polynomial-time algorithm B that solves LWEn,p,ϕ

with success probability q, then there is a (probabilistic) polynomial-time algorithm A that,

given oracle access to B, solves binLWEn,p,ϕ with success probability q.

Proof. For the given binLWEn,p,ϕ samples, let s ∈ {0, 1}n denote the binary secret vector and

As,ϕ be the corresponding distribution. Consider the following algorithm A:

Algorithm 4: binLWE to LWE Reduction

Input: Samples X1, . . . , Xnk ∼ As,ϕ.

Output: Secret vector s ∈ Zn
p .

Sample a vector r← Zn
p uniformly at random.

for i ∈ {1, . . . , nk} do
Denote (a, b) := Xi.

Define Yi := (a, b+ ⟨a, r⟩).
end

Run B on Y1, . . . , Ynk to get a vector s′ ∈ Zn
p .

Output s′ − r.

This algorithm transforms a polynomial number of samples and calls B once, so A runs

in polynomial time. Observe that each sample Xi has b = ⟨a, s⟩ + e for some noise e with

distribution ϕ, so the transformed samples have the form

Yi = (a, b+ ⟨a, r⟩) = (a, ⟨a, s⟩+ ⟨a, r⟩+ e) = (a, ⟨a, s+ r⟩+ e) .

The oracle B succeeds in recovering the secret vector s′ = s + r with probability q, so A
outputs the secret binary vector s = s′ − r with the same probability.

3.3 From Search-LWE to Decision-LWE

In this section, we show how to solve search-LWE given an oracle for decision-LWE, under

the condition that the oracle gives a correct response far more often than it gives a wrong

one. The formal statement of our result is below.

Theorem 3.20. (Search-LWE→ Decision-LWE) Let n ≥ 1 be an integer, p > 10 a prime

modulus polynomial in n, and k a positive integer. Suppose there exists an efficient algorithm

38

B for decision-LWEn,p,ϕ that, given nk

- LWE samples from As,ϕ, outputs YES with probability γ,

- random samples from Zn
p × T, outputs YES with probability δ,

where γ, δ ∈ (0, 1) satisfy γ > 5p2δ. Then there is an algorithm A for search-LWEn,p,ϕ that,

given oracle access to B and nk samples, runs in expected polynomial time and outputs

- a correct answer with probability γ/(5p3) and

- ⊥ with probability 1− γ/(5p3).

Note that we do not make any assumptions here on how large γ and δ must be; in

particular, they need not be negligibly small. We prove this by making the following key

observation: If solving search-LWE is hard, then it is hard to determine the secret vector s

from a given polynomial number of LWE samples distributed according to As,ϕ. Intuitively,

this means that the function defined by these samples is hard to invert, so it can be viewed

as a one-way function.

In their seminal work, Goldreich and Levin [GL89] show how to construct a hard-core

predicate from any one-way function. This tells us that if we can find the inner product of

s and a given vector r, then we can recover the secret vector s. Inspired by this connection,

we define the Goldreich-Levin Learning with Errors (GL-LWE) problem, and use this as

an intermediate problem in our reduction from search-LWE to decision-LWE. We reduce

search-LWE with polynomial modulus to GL-LWE, then reduce this problem to standard

decision-LWE under a reasonable condition.

3.3.1 Search-LWE to GL-LWE

In [GL89], Goldreich and Levin showed that for any one-way function f , the function

b(x, z) := ⟨x, z⟩ mod 2 is a hard-core predicate for the function g(x, z) := (f(x), z). Levin

later improved this result in [Lev12] and showed that the success probability of finding

the hard-core predicate is determined by the success probability of inverting the one-way

function f . For the formal statement and full proof of Levin’s result, we refer the reader to

Appendix A.

We generalize Levin’s result from modulus 2 to modulus p > 10 using the natural gener-

alization of a hard-core predicate for Zp. We remark that this lower bound on p is required

for our analysis. Intuitively, it ensures that the approximate roots of unity found in our

reduction algorithm are close enough for it to find the correct solution with high probability.

39

Lemma 3.21. Let n ≥ 1 be an integer, p > 10 a prime modulus polynomial in n and

f : Zn
p → Zn

p an injective one-way function. Suppose there is an efficient algorithm B that,

given y = f(x) for some x ∈ Zn
p and a random r ∈ Zn

p , guesses ⟨x, r⟩ mod p

- correctly with probability αβ,

- incorrectly with probability α(1− β), and

- outputs ⊥ with probability 1− α,

where the probability α, β ∈ (0, 1) satisfies β > 1 − 1/(5p) and is determined by the ran-

domness of r and that of the algorithm. Then there is an algorithm A running in expected

polynomial time, that given oracle access to B and y = f(x) for some x ∈ Zn
p , outputs x

correctly with probability αβ/(5p2) and outputs ⊥ with probability 1− αβ/(5p2).

Proof. Let ζ := e
2πi
p denote a primitive p-th root of unity. This ζ generates a multiplicative

group {ζ, ζ2, . . . , ζp−1} isomorphic to Zp. Then, without loss of generality the behaviour of

the oracle B is equivalent to that of an oracle that outputs ζa instead of a ∈ Zp and outputs 0

instead of ⊥. For a fixed input y = f(x) that is clear from the context, we use the shorthand

notation B(r) for B(y, r).
Note that the condition on β requires the oracle B to be correct with high probability

when it does not output ⊥. Moreover, since p is polynomial in n, this β approaches 1 as n

increases. Intuitively, this means that B admits defeat and outputs ⊥ far more often than

it guesses the answer incorrectly.

Let FFT denote the Fast Fourier Transform and ei denote the standard basis vector

containing all zeros except a 1 in the i-th coordinate. Consider the following algorithm A:

40

Algorithm 5: OWF to HCP Reduction

Input: y = f(x) ∈ Zn
p for some x ∈ Zn

p .

Output: x′ ∈ Zn
p or ⊥.

Sample ℓ bits until a 0 is obtained. If ℓ > 2n, abort and output ⊥.
Set k := ℓ+ ⌈logp(4n)⌉.
Sample a random matrix R← Zn×k

p .

for z ∈ Zk
p do

for i ∈ {1, . . . , n} do
Define gi(u) := B(Ru+ ei).

Run FFT on gi to compute

hi(z) :=
∑

u∈Zk
p\{0}

ζ−⟨z,u⟩ · gi(u).
if |hi(z)| = 0 then

Output ⊥.
end

Normalize hi(z) to obtain a unit vector h∗i ∈ C.
Find the closest p-th root of unity ζa to h∗i .

Set x′i := a.

end

Set x′ := (x′1, . . . , x
′
n).

if f(x′) = y then
Output x′.

end

end

Output ⊥.

The algorithm samples ℓ bits until it obtains a 0. This random variable ℓ has Bernoulli

distribution with probability 1
2
, so the probability that ℓ = ℓ′ for some fixed positive integer

ℓ′ is 1/2ℓ
′
. Then ℓ > ℓ′ with probability

Pr
ℓ
[ℓ > ℓ′] = 1− Pr

ℓ
[ℓ ≤ ℓ′] =

(
1−

ℓ′∑
j=1

2−j
)
=
(
1−

(
1− 2−ℓ

′))
= 2−ℓ

′
. (3.3)

The algorithm sets k := ℓ+ ⌈logp(4n)⌉. This is large enough if

k >
⌈
logp

(4n
αβ

(2β + p2)
)⌉

,

41

which is satisfied if

ℓ > logp

(2β + p2

αβ

)
+ 1 := ℓ∗ .

By Equation (3.3) and some algebraic manipulations, ℓ satisfies this lower bound with prob-

ability

2−ℓ
∗
= 2log2(αβ/(2β+p2)) · 21/ log2(p)−1 ≥ αβ

4β + 2p2
.

Note that since p is polynomial in n, the factor 2
1

log2(p) approaches 1 from above as n grows.

The algorithm A iterates through all possible guesses z in Zk
p for xTR. For a uniformly

random matrix R, any two vectors of the form Ru for non-zero u ∈ Zk
p are pairwise indepen-

dent. Similarly, vectors of the form Ru+ei are also pairwise independent. To simplify nota-

tion, let m := pk − 1 and enumerate these pairwise independent vectors by r1, . . . , rm ∈ Zn
p .

For the correct value of z = xTR and any coordinate i,

hi(z) =
∑

u∈Zk
p\{0}

ζ−⟨x,Ru⟩B(Ru+ ei) = ζxi

m∑
j=1

ζ−⟨x,rj⟩B(rj) . (3.4)

Normalizing this hi(z) gives a point h∗i on the complex unit circle. We show how under

certain conditions the closest root of unity to h∗i is ζ
xi , in which case we can recover xi with

high probability.

There are three possible cases for each term in this sum. If B outputs 0 for a given rj,

then the summand becomes 0. If B outputs a correct answer for rj, then B(rj) = ζ⟨x,rj⟩ and

the summand becomes 1. Otherwise, if B outputs a wrong answer, B(rj) = ζaζ⟨x,rj⟩ for some

non-zero a ∈ Zp. Using these three cases, Equation (3.4) becomes

hi(z) = ζxi

(
0 +

∑
rj :B correct

1 +
∑

rj :B wrong

ζa
)
= ζxi(c0 + c1ζ

1 + . . .+ cp−1ζ
p−1) .

for some positive real coefficients c0, c1, . . . , cp−1.

Consider the outputs B(r1), . . . ,B(rm) and let Yj be the indicator random variable for

B(rj) ̸= 0 for any j. These random variables Y1, . . . , Ym have Bernoulli distribution with

probability α of being 1. Then Y :=
∑m

j=1 Yj counts the number of non-zero outputs. By

Lemma 2.29, we have

Pr
[
Y <

mα

2

]
≤ Pr

[
|Y −mα| > mα

2

]
≤ 4

mα
.

So, at least mα/2 of the outputs are non-zero with probability at least 1− 4/(mα). Let E1

denote this event.

42

Let t be the number of non-zero values among thesem outputs. Without loss of generality,

assume that these t non-zero outputs correspond to r1, . . . , rt. We bound the number of

correct values among these t non-zero outputs. Define random variables Z1, . . . , Zt where Zj

is the indicator random variable for B(rj) = ζ⟨xi,rj⟩. Since the correctness of these outputs

is conditioned on them being non-zero, Zj has value 1 with probability (αβ)/α. Hence

Z1, . . . , Zt have Bernoulli distribution with parameter β. Let c > 0 be a constant to be

determined later. Then by Lemma 2.29,

Pr [Z < (1− c)tβ] ≤ Pr [|Z − tβ| < ctβ] ≤ 1

c2tβ
.

So, the number of correct outputs among the t non-zero outputs is at least (1 − c)tβ with

probability at least 1− 1/(c2tβ). Let E2 denote this event.

By the above bounds, the probability that both events E1 and E2 occur is

Pr[E1 ∧ E2] ≥
(
1− 4

mα

)(
1− 2

c2mαβ

)
> 1− 4

mα
− 2

c2mαβ
.

For large enough k, we have m > 4n/(α(2 + 1/(c2β))), which makes the right hand side of

the inequality above least 1− 1/(2n). If both E1 and E2 occur,

hi(z) = ζxi(c0 + c1ζ
1 + . . .+ cp−1ζ

p−1)

has coefficients satisfying c0 ≥ (1− c)tβ and c1 + . . .+ cp−1 ≤ t− (1− c)tβ.

Now we show that if this value hi(z) is normalised to h∗i , the closest root of unity is ζxi .

Intuitively, the condition on β and choice of parameter c above make the coefficient c0 much

larger than the sum of the other coefficients c1 + . . . + cp−1. This bias ensures that hi(z) is

close to a multiple of ζxi and hence h∗i is close to ζxi . We illustrate this idea in the diagram

below.

R

I
c0ζ

xic1ζ
xi+1

c2ζ
xi+2

. . .

. . .
cp−2ζ

xi+p−2

cp−1ζ
xi+p−1

R

I

ζxi

hi(z)

h∗i

Now we formalize this argument. Denote ω := c0 + c1ζ + . . .+ cp−1ζ
p−1. The factor ζxi in

43

hi(z) has length 1, so it is enough to show that the normalization ω∗ := ω/ |ω| is close to 1.

Since the p-th roots of unity are evenly spaced on the complex unit circle, the angle between

any consecutive pair of these is 2π/p. Hence, we need to show that the angle θ between ω∗

and the root 1 = ζ0 is strictly less than π/p. To do this, we use the formula for the length

of the chord between ω∗ and 1 in terms of θ,

|ω∗ − 1| = 2 sin(θ/2). (3.5)

By the lower bound on p, we have π/p < π/2. Since sin(ϕ) is an injective increasing function

for the range 0 ≤ ϕ < π
p
, showing that 2 sin(θ/2) ≤ 2 sin(π/(2p)) will immediately imply

θ < π/p. Now we show that |ω∗ − 1| < 2 sin(π/(2p)). By the triangle inequality and

hypothesis on β, which implies β > 1/(2(1− c)), we obtain an upper bound

|ω| =
∣∣c0 + c1ζ + . . .+ cp−1ζ

p−1∣∣
≤ c0 + c1 + . . .+ cp−1

≤ c0 + (1− c)tβ .

Similarly, by the triangle inequality and lower bound on β, we obtain the lower bound

|ω| ≥
∣∣c0 − ∣∣c1ζ + . . .+ cp−1ζ

p−1∣∣∣∣
≥ |c0 − (c1 + . . .+ cp−1)|

≥ c0 − (c1 + . . .+ cp−1)

≥ t(2β(1− c)− 1).

Together, this upper and lower bound on |ω| implies

|ω∗ − 1| = |ω − |ω||
|ω|

≤ 1

|ω|
|ω − c0|+ | |ω| − c0|

≤ 1

|ω|
(∣∣c1ζ + . . .+ cp−1ζ

p−1∣∣+ |c0 + c1 + . . . cp−1 − c0|
)

≤ 2(c1 + . . .+ cp−1)

c0 − (c1 + . . .+ cp−1)

≤ 2t(1− (1− c)β)

t(2(1− c)β − 1)

=
1

2(1− c)β − 1
− 1 .

44

By hypothesis on β, lower bound p > 10, and setting c = 1/p,

β > 1− 1

5p
>

1

2(1− c)

(
1 +

1

1 + 2 sin(π/(2p))

)
.

This lower bound is less than 1 for this choice of parameters and approaches 1 as p grows.

Since β ∈ (0, 1), this means that β is nearly 1 for large values of p. For this β, we have

|ω∗ − 1| ≤ 1

2(1− c)β − 1
− 1 < 2 sin(π/(2p)) .

Therefore, if both events E1 and E2 occur for every coordinate i ∈ [n], we obtain ζxi as the

closest p-th root of unity to h∗i for every i. Under these conditions, A will output x.

Now we analyze the runtime of A. The expected number of bit samples needed until a

0 is obtained is 2, so in expectation, k = 2 + ⌈logp(4n)⌉ = O(logp(n)). Thus, the algorithm

can iterate through all guesses for xTR in expected time polynomial in n. Running FFT on

the coefficients gi to compute hi(z) requires O(pk log pk) time. Finding the closest p-th root

of unity to h∗i can be done by checking if the bound in Equation (3.5) holds for each root,

which takes O(p) time. Since the one-way function f is efficiently computable, the algorithm

can efficiently check if x′ = x. Iterating over all n coordinates of x and trying all possible

values of z, the total expected runtime of A is

n · pk · (O(pk log pk) +O(p)) = n · pO(logp(n)) ·O(plogp(n) log(plogp(n))) = O(n3 log n) .

The success of A depends on k being sufficiently large and hi(z) being non-zero for the

sampled R. Then the probability that A succeeds, over the randomness of the input x and

the algorithm’s internal randomness,

Pr
x
[A(f(x)) = x] = Pr

x
[k large enough] · Pr

R
[∀i ∈ [n], E1 ∧ E2 | k large enough]

>
αβ

4β + 2p2
·
(
n
(
1− 1

2n

)
− (n− 1)

)
>

αβ

4β + 2p2
· 1
2

≥ αβ

5p2
.

Since A verifies its guess for x and never outputs a wrong answer, it outputs ⊥ with the

remaining probability.

Now we apply this generalized result to our study of the hardness of LWE. First we define

45

our intermediate worst-case problem.

Definition 3.22 (GL-LWE). The Goldreich-Levin Learning with Errors problem, denoted

GL-LWEn,p,ϕ is defined as: Given a polynomial number of samples from the distribution As,ϕ,

determined by a (fixed) secret vector s ∈ Zn
p and distribution ϕ, and a uniformly random

vector r ∈ Zn
p , output ⟨s, r⟩ mod p.

We use this as an intermediate problem to reduce (average-case) search-LWE to (average-

case) decision-LWE. We first remark that the standard average-case search-LWE problem

reduces to the worst-case version of search-LWE via the following straightforward reduction:

Given LWE samples for a uniformly random secret s, the reduction algorithm simply runs

its oracle for worst-case search-LWE on the given samples and succeeds in recovering s with

the same probability.

Now we interpret Lemma 3.21 as a reduction from worst-case search-LWE to GL-LWE.

Corollary 3.23 ((Search-LWE → GL-LWE)). Let n ≥ 1 be an integer, p > 10 a prime

modulus polynomial in n, and k a positive integer constant. Suppose that there is an efficient

algorithm B for GL-LWEn,p,ϕ that, given nk samples from As,ϕ for some fixed secret s ∈ Zn
p ,

and a uniformly random vector r ∈ Zn
p , outputs a guess for ⟨s, r⟩ mod p

- correctly with probability α∗β∗,

- incorrectly with probability α∗(1− β∗), or

- outputs ⊥ with probability 1− α∗,

where the probabilities α∗, β∗ ∈ (0, 1) satisfy β∗ > 1 − 1/(5p) and are determined by the

randomness of s, r, and that of the algorithm. Then there is an algorithm A for search-

LWEn,p,ϕ running in expected polynomial time that, given nk samples from As′,ϕ for some

fixed secret s′ ∈ Zn
p ,

- correctly outputs s′ with probability αβ/(5p2) or

- outputs ⊥ with probability 1− αβ/(5p2).

Proof. Consider the function fϕ : Zn
p → Zn

p given by fϕ(s) := (A,As/p + e), where the

rows of A are uniformly random vectors sampled from Zn
p and e is sampled according to

distribution ϕ. This can be used as an injective function, because with high probability

there is a unique s that satisfies the system of equations determined by any given output

(A,b) = (A,As/p+ e). The result then follows immediately from Lemma 3.21.

46

3.3.2 GL-LWE to Decision-LWE

Finally, we complete our chain of reductions by reducing GL-LWE to decision-LWE. We

show that if there is a (γ, δ)-solver with γ ≫ δ for decision-LWE, then this can be used

as an oracle for GL-LWE and combined with Corollary 3.23 to complete the reduction from

search-LWE to decision-LWE.

Lemma 3.24 (GL-LWE → Decision-LWE). Let n ≥ 1 be an integer, p a prime modulus,

and k a positive integer constant. Suppose that there exists an efficient algorithm B for

decision-LWEn,p,ϕ that, given nk

- LWE samples from As,ϕ for some uniformly random s, outputs YES with probability γ,

- random samples from Zn
p × T, outputs YES with probability δ.

Then there is an algorithm A that, given oracle access to B and an instance of GL-LWEn,p,ϕ

consisting of nk samples from As,ϕ for a fixed secret s, outputs

• a correct answer with probability γ/p,

• a wrong answer with probability (1− 1/p)δ, and

• ⊥ with probability 1− γ/p− (1− 1/p)δ.

Proof. Let s ∈ Zn
p be the fixed secret and e ∈ T be the error with distribution ϕ that

correspond to the given samples from As,ϕ. Consider the following algorithm A:

Algorithm 6: GL-LWE to Decision-LWE Reduction

Input: Samples X1, . . . , Xnk ∼ As,ϕ and r ∈ Zn
p .

Output: c ∈ Zp or ⊥.

Sample c← Zp uniformly at random as a guess for ⟨s, r⟩ mod p.

Sample vector t← Zn
p uniformly at random.

for i ∈ {1, . . . , nk} do
Denote (a, b) := Xi.

Define a′ := a+ r and b′ := b+ c/p+ ⟨a′, t⟩ /p.
Define Yi := (a′, b′).

end

Run B on Y1, . . . , Ynk to obtain an answer.

if B responds YES then
Output c.

end

Output ⊥.

47

Since a polynomial number of samples is transformed and the oracle B is called once,

algorithm A runs in polynomial time.

A is given LWE samples of the form (a, b) as input, where b = ⟨a, s⟩ /p + e. Suppose A
guesses c correctly so that c = ⟨s, r⟩ mod p. In this case, the transformed samples (a′, b′) are

LWE samples, because both a′ = a + r and r are uniformly random. By construction, for

uniformly random secret s′ := s+ t,

b′ = b+
c

p
+

1

p
⟨a′, t⟩ = 1

p
⟨a+ r, s+ t⟩+ e =

1

p
⟨a′, s′⟩+ e .

Since c and t were chosen independently and uniformly at random, b′ is uniformly random.

Hence, the oracle B is given valid LWE samples distributed according to As′,ϕ. It correctly

responds YES with probability γ. Then the guess c has value ⟨s, r⟩ mod p with probability

1/p, so the probability that A outputs a correct answer is γ/p.

The algorithm guesses c incorrectly with probability 1−1/p. In this case, the transformed

samples (a′, b′) are uniformly distributed over Zn
p × T. This is because a′ is uniform over

Zn
p , r is uniformly random, and, since c and t were chosen independently and uniformly at

random, b′ = b+ c/p+ ⟨a′, t⟩ /p is uniformly random. Hence, the oracle B receives uniformly

random samples and incorrectly responds YES with probability δ. Then A outputs a wrong

answer with probability (1− 1/p)δ.

Lastly, the algorithm outputs ⊥ with the remaining probability 1− γ/p− (1− 1/p)δ.

Now we combine Corollary 3.23 and Lemma 3.24 to obtain our second main result.

Corollary 3.25 (Search-LWE → Decision-LWE). Let n ≥ 1 be an integer, p > 10 a prime

modulus polynomial in n, and k a positive integer constant. Suppose that there exists an

efficient algorithm B for decision-LWEn,p,ϕ that, given nk

- LWE samples from As,ϕ, outputs YES with probability γ,

- random samples from Zn
p × T, outputs YES with probability δ,

where γ, δ ∈ (0, 1) satisfy γ > 5p2δ. Then there is an algorithm A for search-LWEn,p,ϕ

running in expected polynomial time that, given oracle access to B and nk samples, outputs

- a correct answer with probability γ/(5p3) and

- ⊥ with probability 1− γ/(5p3).

48

Proof. Set α := (γ + (p − 1)δ)/p and β := γ/(γ + (p − 1)δ). These satisfy αβ = γ/p and

α(1− β) = (1− 1/p)δ. By the assumption γ > 5p2δ and lower bound p > 10,

β =
γ

γ + (p− 1)δ
> 1− p− 1

5p2 + p− 1
> 1− 1

5p
.

Consider the following algorithm A: Given an instance of search-LWE, first run the al-

gorithm from Lemma 3.24 to solve the corresponding instance of GL-LWE. Then run the

algorithm from Corollary 3.23 to solve the corresponding GL-LWE instance. Finally, run the

trivial algorithm to solve the given average-case search-LWE instance. By Corollary 3.23, for

these values of α and β, this algorithm A outputs a correct answer for the given instance of

search-LWE with probability
αβ

5p2
=

γ

5p3
,

and outputs ⊥ with the remaining probability.

3.4 Future Directions

In this work, we offer a new perspective on the computational complexity of lattice prob-

lems by characterizing the hardness of a computational problem in terms of the maximum

success probability achievable by any probabilistic polynomial-time algorithm.

We show how characterizing the hardness in such a way enables us to obtain a much

tighter reduction from the worst-case BDD problem for lattices to the average-case search-

LWE problem, as well as a tight reduction from search-LWE to decision-LWE.

We believe that our work should motivate quantifying the hardness of computational

problems – especially those relevant to cryptography – using a similar metric. We empha-

size that such reductions will be very sensitive to the number of calls made to the oracle,

since the success probability will decrease exponentially with the number of oracle calls. In

the reductions in this work, our main challenge was to ensure that our reductions make a

single call to the oracle, even if that meant the reduction succeeds with a relatively small

probability.

49

CHAPTER 4

Code Equivalence

Based on joint work with Mahdi Cheraghchi and Nikhil Shagrithaya in [CSV25].

The Code Equivalence (CE) problem asks if two given codes C1 and C2 are “equivalent”

in some metric-preserving way; variants of the CE problem specify the type of equivalence.

Permutation Code Equivalence (PCE) asks if the codes are the same up to permutation of

the coordinates of codewords, while Signed Permutation Code Equivalence (SPCE) allows

equivalence up to signed permutations. More generally, Linear Code Equivalence (LCE)

allows an equivalence up to permutation and multiplication by a (non-zero) constant. (For

formal definitions of these problems, see Definitions 2.4 to 2.6 in Section 2.4.) Variants of

CE belong to a larger class of isomorphism problems that ask the following question: Given

two objects of the same kind, is there an isomorphism that transforms one object into the

other? Another such problem is the Graph Isomorphism problem.

Besides being interesting problems in their own right, CE problems have many important

applications. Perhaps most notably, the conditional hardness of CE variants has been used

as a security assumption for several cryptographic schemes proposed to be post-quantum.

These include the seminal McEliece public-key encryption scheme [McE78], a recent NIST

post-quantum standardization submission called “Classic McEliece” [ABC+22], and the more

recent LESS identification scheme [BBPS21, BBPS22].

Prior Work. Given the relevance of these problems to cryptography, there has been a

considerable amount of work on designing efficient algorithms that solve these problems.

Leon [Leo03] introduced an algorithm for the search version of PCE that works well for a

large number of codes, but still requires exponential time in the worst case. The Support

Splitting Algorithm developed by Sendrier in [Sen00] and extended by Sendrier and Simos in

[SS13a] gives an algorithm for linear codes that is efficient for codes with small hull, where

the hull of a code is defined by the intersection of the code and its dual. This algorithm,

however, does not work for the case where the dimension of the hull is zero, but this case

50

was later handled by Bardet, Otmani, and Saeed-Taha in [BOS19]. In the latter paper, the

authors reduce the problem of deciding PCE to a weighted version of Graph Isomorphism,

and then use a variant of Babai’s algorithm for solving the latter problem [Bab16] to give a

quasi-polynomial time algorithm that computes PCE for the zero hull case. Recently, Bennett

and others [BBB+25] show how to use Babai’s algorithm for PCE [BCGQ11] to construct a

provable deterministic algorithm that solves LCE for any arbitrary code of block length n

over any finite field of size q in time 2n+o(n+q). The authors also give provable algorithms for

solving PCE and LCE for arbitrary codes of block length n and any field size q in randomized

2n/2+o(n+q)-time and quantum 2n/3+o(n+q)-time.

On the other side of the cryptographic coin, considerable attention has been devoted

towards understanding the computational hardness of these problems. Petrank and Roth in

[PR97] showed that Graph Isomorphism reduces to PCE, and that PCE is not NP-complete

unless the polynomial hierarchy collapses. This was used as evidence for the computational

hardness of PCE until Babai introduced his quasi-polynomial time algorithm for deciding

Graph Isomorphism [Bab16]. Even under the assumption that the polynomial hierarchy does

not collapse, however, it is still possible that both Graph Isomorphism and PCE cannot be

decided in polynomial time.

In [SS13a], Sendrier and Simos give a reduction from LCE to PCE that runs in time

polynomial in the block length n and alphabet size q of the codes. They use the closure

of a code; for any code of block length n over a field of size q, this is the set obtained by

taking every codeword and multiplying each of its n coordinates with all the non-zero field

elements to produce a new vector of length n(q−1). Then using the fact that multiplication

by any non-zero field element induces a permutation on the elements in F∗q, they reframe

scalar multiplication as a permutation over F∗q. In [DG23], Ducas and Gibbons use a specific

form of this closure to prove a reduction from SPCE to PCE. Biasse and Micheli in [BM23]

give a search-to-decision reduction for PCE, which implies that the decision version of PCE

is at least as hard as the search version. Bennett and Win in [BW24] give several reductions

between CE variants and other isomorphism problems. They extend the closure technique

from [SS13a] to give a reduction from LCE to SPCE, and also give a reduction from SPCE to

the Lattice Isomorphism Problem (LIP).

LIP is an analogous problem to CE for lattices. Two lattices are said to be isomorphic if

there exists an orthogonal transformation that transforms one lattice (basis) into the other.

LIP asks if such an isomorphism exists (see Definition 2.7 for formal definition). In their

reduction from SPCE to LIP, Bennet and Win use Construction A (see Definition 2.17) to

lift a linear code over a prime finite field Fp to a lattice in Rn. Because this construction is

only well-defined for prime fields, the reduction only works for prime fields. It remains an

51

open problem to find a reduction from any CE variant to LIP for non-prime fields.

Our Contributions. Now we state our main results and place them into context of the

prior work described above. In [BW24], the authors prove Karp reductions from LCE to PCE

and from LCE to SPCE. In our work, we show a reverse Karp reduction from PCE to LCE.

Theorem 4.1 (PCE reduces to LCE, informal). For linear codes with block length n over a

field of size q, there is a Karp reduction from PCE to LCE that runs in poly(n, log q) time.

The formal statement is given in Theorem 4.4. This result, along with the Karp reduction

in [SS13b, BW24] from LCE to PCE running in poly(n, q) time, implies that the problems LCE

and PCE are computationally equivalent up to factors in the runtime that are polynomial in

n and q.

Additionally, the Karp reduction from LCE to SPCE detailed in [BW24, Theorem 4.4,

Corollary 4.5] combines with our result to give a reduction from PCE to SPCE running in

poly(n, q) time. In situations where q is much larger than n (as is the case for Reed-Solomon

codes, for example), it is desirable to have the runtime depend only logarithmically on q.

Note that at least log q time is required to express a single element of the field, so the

dependence on q cannot be smaller than log q. Our second result is a Karp reduction from

PCE to SPCE whose runtime depends only logarithmically on q.

Theorem 4.2 (PCE reduces to SPCE, informal). For linear codes with block length n over a

field of size q, there is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time.

The formal statement is given in Theorem 4.5. This result, together with a Karp reduction

from SPCE to PCE from [DG23, Lemma 10] running in poly(n, log q) time, implies that PCE

and SPCE are computationally equivalent problems up to factors in the runtime that are

polynomial in n and log q.

Finally, by combining the above result with the Karp reduction from SPCE over prime

fields to LIP from [BW24, Theorem 5.1], we obtain the following corollary.

Corollary 4.3 (PCE reduces to LIP). For any prime q, there is a Karp reduction from PCE

over a field of order q to LIP that runs in poly(n, log q) time.

4.1 Reductions from PCE to LCE and SPCE

We formally state our results below and prove them in this section. These reductions are

all deterministic Karp reductions, so we do not specify this in our statements hereafter.

52

Theorem 4.4 (PCE reduces to LCE). There is a reduction from PCE to LCE that runs in

poly(n, log q) time, where n is the block length and q is the field size of the input code pair.

Theorem 4.5 (PCE reduces to SPCE). There is a reduction from PCE to SPCE that runs in

poly(n, log q) time, where n is the block length and q is the field size of the input code pair.

The following observation will be used throughout our reduction.

Observation 4.6. Any invertible matrix S ∈ GLk(F) induces a bijective map on Fk. In

particular, for any x,y ∈ Fk, we have Sx = Sy if and only if x = y. Then when S

is multiplied by some matrix A of the appropriate dimension, it maps identical (distinct)

columns in A to identical (distinct) columns in SA.

We will use the following three lemmas to justify why certain assumptions about the input

can be made without loss of generality.

Lemma 4.7 (adapted from [Mac33, Corollary 27.2]). For any prime power q and matrices

A,B over Fq, the equivalence A = PBQ holds for some P,Q over Fq if and only if A and

B have equal rank.

Lemma 4.8. Let k, n ∈ N and q be a prime power. For any matrices G,H ∈ Fk×n
q , if (G,H)

is in PCE, then no column of G appears in G more times than a column of H appears in H.

Proof. By definition, there must be some S ∈ GLk and P ∈ Pn such that SGP = H.

By Observation 4.6, S takes identical columns in G to identical columns in SG. When

multiplied with G on the right, P only permutes the columns of G and so does not change

the frequency with which any column appears in the matrix SG. Therefore for every column

c in SG, its corresponding column in H must appear the same number of times as c appears

in SG.

Lemma 4.9. For any G,H ∈ Fk×n
q , let G and H be the submatrices of G and H, respectively,

obtained by removing all columns equal to 0 ∈ Fk
q . Then (G,H) is in PCE if and only if

(G,H) is in PCE.

This lemma follows from the following trivial reduction: If G and H satisfy the PCE

condition, there exist matrices S ∈ GLk and P ∈ Pn such that SGP = H. Because S is a

linear map, it will always map 0 ∈ Fk
q to itself, so there is an invertible submatrix of S and

a permutation submatrix of P for which G and H satisfy the PCE condition.

As a result of Lemma 4.9 and Lemma 4.8, we can assume without loss of generality that

any given input pair of matrices do not contain a zero column and have the same column

frequency.

Now we define the construction that will transform the input matrices in our reduction.

53

Construction 4.10. Given a k×n matrix A over Fq with column vectors A[1], . . . ,A[n] ∈
Fk
q , let mA denote the maximum number of times a column appears in A. Denote m :=

mA+1. We construct the k×nm matrix Â by appending m copies of each column vector in

order. More explicitly, for every i ∈ [n] and j ∈ [m], we set Â[(i− 1)m+ j] := A[i]. Define

the (k+1)× n matrix A′1 by appending a row of all ones at the bottom of matrix A, define

the (k+1)×nm matrix A′2 by appending a row of all zeros at the bottom of matrix Â, and

define the (k + 1)× (nm+ 1) matrix A′3 by placing ones in every entry of the last row and

zeros everywhere else. Denoting n′ := n+ 2nm+ 1, we obtain the final (k + 1)× n′ matrix

A′ by concatenating the block matrices A′1, A
′
2, and A′3:

A′ :=
[

A′1 | A′2 | A′3

]
.

1 1 . . . 1 0 0 0 1 1 1

A Â 0

Figure 4.1: The matrix A′ obtained by Construction 4.10.

Note that if the given matrix A has full row rank, then A′ must have full row rank.

With these assumptions and definitions in place, we now prove the main result.

Proof of Theorem 4.4: Given a pair of matrices G,H ∈ Fk×n
q as input, we construct matrices

G′,H′ according to Construction 4.10. By Lemma 4.7 and Lemma 4.9, we can assume

without loss of generality that G and H have full row rank and do not contain any zero

columns. Let mG denote the maximum number of times a column appears in G, and define

mH similarly. By Lemma 4.8, we must have mG = mH. Denoting m := mG + 1 = mH + 1

and n′ := n + 2nm + 1, we obtain (k + 1) × n′ matrices G′ and H′. Note that because

m ≤ n + 1, these matrices can be constructed deterministically in poly(n, log q) time. The

claim in Theorem 4.4 then follows from Lemma 4.11 and Corollary 4.16, which are stated

and proven below.

The proof of Theorem 4.5 is nearly identical to the above proof, but with a restriction to

the set of signs {−1,+1} instead of all non-zero field elements in the proof of Corollary 4.16.

54

4.1.1 From PCE to LCE

First we show the forward direction. We prove that our construction preserves the per-

mutation equivalence of the input pair, which gives the following stronger result.

Lemma 4.11. For any G,H ∈ Fk×n
q , let G′,H′ be the corresponding matrices given by

Construction 4.10. If (G,H) is in PCE, then (G′,H′) is in PCE (and therefore in LCE).

Proof. By definition, (G,H) is in PCE if and only if there exist an invertible matrix S ∈ GLk

and a permutation matrix P ∈ Pn such that SGP = H. From these matrices we will

construct S′ ∈ GLk+1 and P′ ∈ Pn′ such that S′G′P′ = H′. Define S′ ∈ GLk+1 such that the

top-left block submatrix is S′[1 : k, 1 : k] = S, the bottom-right entry is S′[k + 1, k + 1] = 1,

and all other entries are zero.

Let σP : [n] → [n] be the permutation map described by P. Define a new permutation

σP′ : [n′] → [n′] that permutes the first n columns of G′ among each other according to P ,

i.e. σP′(x) := σP(x) for all x ∈ [n]. We also define σP′ such that it permutes each of the

nm columns in the second block according to how its corresponding column was permuted

in the first block. Formally, for every x ∈ [n + 1, n + nm], we write x = n + m(i − 1) + j

uniquely for i ∈ [n] and j ∈ [m] and set σP′(x) := n +m(σP(i) − 1) + j. Lastly, we define

σP′ such that it sends each of the last nm + 1 columns identically to itself, i.e. σP′(x) := x

for every x ∈ [n+ nm+ 1, n+ 2nm+ 1]. Finally we let P′ ∈ Pn′ be the permutation matrix

defined by σP′ .

We claim that S′G′P′ = H′. This holds if and only if S′G′P′[x] = H′[x] for every column

x ∈ [n′]. We show that this is the case for every column in each of the three blocks. For

every x ∈ [n], by the definition of σP′ , the fact that each column in the first block has 1 as

the last entry, and the PCE assumption,

S′G′P′[x] = S′G′[σP′(x)] = SG[σP(x)] ∥ 1 = SG[x]P ∥ 1 = SGP[x] ∥ 1 = H[x] ∥ 1 = H′[x].

Here “∥” denotes concatenation of an additional entry at the end of the column vector. For

x ∈ [n+1, n+nm], we can write x = n+m(i− 1)+ j for some i ∈ [n] and j ∈ [m]. Then by

the definition of σP′ , the fact that each column in the second block has 0 as the last entry,

and the PCE assumption,

S′G′P′[x] = SG[σP′(x)] ∥ 0 = SG[n+m(σP(i)− 1) + j] ∥ 0 = SG[σP(i)] ∥ 0

= SGP[i] ∥ 0 = H[i] ∥ 0 = H[n+m(i− 1) + j] ∥ 0 = H′[x].

Lastly, for all x ∈ [n+ nm+ 1, n+ 2nm+ 1], by definition of σP′ , the fact that each column

55

in the last block is identical to ek+1, and the PCE assumption,

S′G′P′[x] = SG[σP′(x)] ∥ 1 = SG[x] ∥ 1 = SGP[x] ∥ 1 = H[x] ∥ 1 = H′[x].

Therefore, (G′,H′) is in PCE.

Because the matrix groups are nested Pn ⊆ SPn ⊆Mn, Lemma 4.11 immediately implies

the first direction of both statements Theorem 4.4 and Theorem 4.5.

4.1.2 From LCE to PCE

Now we prove the other direction, and show that if the constructed matrix pair (G′,H′)

is in LCE, then the original matrix pair (G,H) must be in PCE. This requires some careful

analysis of how the change-of-basis matrix S and monomial matrix M affect each block of

the matrices G′ and H′.

First we show that for any monomial matrix M = DP for which (G′,H′) is in LCE, the

permutation matrix P must respect the “boundaries” between the three block matrices of

G′.

Lemma 4.12. For any G,H ∈ Fk×n
q , if S′G′M′ = H′ for some S′ ∈ GLk+1 and M′ =

D′P′ ∈ Mn′, where P′ ∈ Pn′, the corresponding permutation map σP′ : [n′] → [n′] satisfies

the following:

(i) For every i ∈ [1, n], σP′(i) ∈ [1, n].

(ii) For every i ∈ [n+ 1, n+mn], σP′(i) ∈ [n+ 1, n+mn].

(iii) For every i ∈ [n+ nm+ 1, n′], σP′(i) ∈ [n+mn+ 1, n′].

Proof. As a result of Lemma 4.9, we can assume without loss of generality that G and H do

not contain a zero column. Suppose S′ ∈ GLk+1 andM′ = D′P′ ∈Mn′ satisfy S′G′M′ = H′.

By definition, S′ has an inverse S′−1 ∈ GLk+1, so we can rewrite

G′M′ = S′−1H′. (4.1)

By Observation 4.6, S′−1 maps identical columns in H′ to identical columns in S′−1H′. To

prove each part of the claim, we analyze the effect of S′−1 on each block H′1,H
′
2,H

′
3 of matrix

H′.

First we prove part (iii). By construction, the last nm + 1 columns of H′, contained in

H′3 are identical to ek+1. By assumption, H does not contain a zero column, so no other

56

column in H′ outside of the block H′3 is equal to ek+1. Then each of the nm+ 1 columns in

S′−1H′3, and no other column of S′−1H′, is equal to S′−1ek+1.

By Equation (4.1), the last nm + 1 columns of G′M′ must be identical and equal to

S′−1ek+1. Since M′ = D′P′ for some diagonal matrix D′ and permutation P′, it maps each

column in G′ to a (possibly) scaled permutation of that column in G′M′. Thus, the matrix

M′ must scale and permute the columns of G′ to produce nm + 1 identical columns in the

last block of G′M′. We claim that multiplying by M′ cannot cause the number of copies of

a column in G′ to increase in G′M′. In particular, no two columns from different blocks of

G′ can be scaled to produce identical columns in G′M′. By construction, the last row of G′

ensures that no column of G′1 can be scaled to produce a column of G′2, so M′ cannot map

columns from G′1 and G′2 to identical columns in G′M′. Additionally, M′ maps every ek+1

column in G′3 to a scaling of ek+1 in G′M′, and since no column in G′1 or G′2 can be scaled

to produce a multiple of ek+1, all scalings of ek+1 in G′M′ can only come from G′3. The only

column in G′ that appears nm+1 times is ek+1 from G′3. In this way, M′ can only produce

nm + 1 identical columns in the last block of G′M′ by mapping from the nm + 1 columns

of G′3. Therefore, σP′(i) maps every column with index in [n+mn+1, n′] to a column with

index in [n+mn+ 1, n′].

Next we show part (ii). By part (iii), any column with index i ∈ [n+1, n+mn] is permuted

to a column with index σP′(i) ≤ n+mn, so it is enough to show that σP′(i) ≥ n+1. Suppose

for the sake of contradiction that there is a column with index i ∈ [n+1, n+nm] in G′ that

is mapped to a column with index σP′(i) ∈ [1, n]. By design, the last entry of the columns

in G′1 is 1 and differs from the last entry 0 of the columns in G′2, so each column in G′1

appears strictly less than m times. Then, if M′ permutes any number of columns from G′1

with the same number of columns in G′2, there will be some column in the second block

of G′M′ that appears less than m times. But by Observation 4.6, every column in S′−1H′2

appears at least m times, and since the second block of G′P′ must be equal to S′−1H′2, this

gives a contradiction.

Finally, part (i) follows immediately from parts (ii) and (iii).

This result gives the following corollary.

Corollary 4.13. For any G′,H′,S′,M′ as in Lemma 4.12, the monomial matrix M′ is

comprised of three block matrices M1 ∈ Mn, M2 ∈ Mnm, M3 ∈ Mnm+1, such that M1,

M2, and M3 only act on the first n, next nm, and last nm+ 1 columns of G′, respectively.

57

M1

M2

M3

Figure 4.2: The structure of matrix M′.

Now, we use this lemma to show that any invertible matrix for which (G′,H′) is in LCE

must contain only zeros in the last row and last column, except for the last entry.

Lemma 4.14. For any G′,H′,S′,M′ as in Lemma 4.12, the change-of-basis matrix S′ sat-

isfies the following properties:

(i) The last column of S′ contains zeros in the first k entries.

(ii) The last row of S′ contains zeros in the first k entries.

(iii) The entry S′[k + 1, k + 1] is non-zero.

S

a

Figure 4.3: The structure of matrix S′.

Proof. By definition, S′ has an inverse S′−1 ∈ GLk+1, so we can write G′M′ = S′−1H′.

By Observation 4.6, S′−1 maps identical columns in H′ to identical columns in S′−1H′. To

prove each part of the claim, we analyze the effect of S′−1 on each block H′2 and H′3 in the

right-hand side of the equation.

By Corollary 4.13, we know that M′ is comprised of three block matrices M1 ∈ Mn,

M2 ∈Mnm, and M3 ∈Mnm+1 that affect the first n, next nm, and last nm+ 1 columns of

G′, respectively. This allows us to write G′2M2 = S′−1H′2 and G′3M3 = S′−1H′3.

For part (i), consider the equation G′3M3 = S′−1H′3. By construction, all columns of G′3

and H′3 are identical and equal to ek+1. Since M3 permutes all columns of G′3 and multiplies

58

them by a non-zero scalar, all columns of G′3M3 must be of the form a · ek+1 for some

non-zero a. By Observation 4.6, all columns of S′−1H′3 are identical. Then for any column

a · ek+1 of G
′
3M3, we have S

′(a · ek+1) = ek+1. If any of the first k entries of the last column

of S′ is non-zero, then the corresponding entry in S′(a · ek+1) = ek+1 must be non-zero, but

this is not the case. Therefore, the last column of S′ must contain zeros in the first k entries.

For part (ii), consider the equation G′2M2 = S′−1H′2. By construction, the last rows of G′2

and H′2 only contains zeros. By Lemma 4.12, no columns in G′2M2 could have been mapped

from outside G′2, so the last row of G′2M2 must only contain zeros. Since G is a submatrix

of G′2 with full row rank k, the first k rows of G′2, denoted by Ĝ in Construction 4.10, form

a submatrix of rank k. Then Ĝ also has column rank k, and because the last row of G′2

only contains zeros, G′2 must contain k linearly independent columns. By Corollary 4.13,

we know that G′2M2 is entirely comprised of columns of G′2 multiplied by a non-zero scalar,

so G′2M2 has column rank k. Then the first k rows of G′2M2 form a submatrix of rank k.

By definition, the last row of S′ contains the coefficients that specify the linear combination

of rows of G′2M2 which gives the last row of H2. But since the first k rows of G′2M2 are

linearly independent, no linear combination of these can produce the all-zero last row of H2.

Therefore, the first k entries in the last row of S′ must be zero.

Part (iii) follows immediately from parts (i) and (ii) and the fact that S′ is invertible.

Finally, we show how Lemmas 4.12 and 4.14 combine to ensure the existence of an un-

signed permutation for which (G,H) is in PCE.

Corollary 4.15. Let M′ ∈ Mn be a permutation with block submatrices M1,M2,M3 as

described in Corollary 4.13. Then, M1 = a · P for some permutation P ∈ Pn and non-zero

scalar a.

Proof. By Corollary 4.13, we can write G′1M1 = S′−1H′1. By Lemma 4.14 and Observa-

tion 4.6, the last row of S′−1H′1, and hence the last row of G′1M1, must be of the form

(a, a, . . . , a) for some non-zero scalar a. By construction, the last row of G′1 contains only

ones. Since M1 acts on G′1 by permuting and scaling the columns of G′1, and since the

last row of G′1M1 contains identical entries a, we infer that M1 must multiply each column

by the same scalar a. Therefore, M1 = a · P for some unsigned permutation P ∈ Pn and

non-zero scalar a.

Finally, we use the structure of the permutation and change-of-basis matrix for any LCE

matrices G′ and H′ to show that the original matrices G and H must be in PCE.

Corollary 4.16. For any G,H ∈ Fk×n
q , if (G′,H′) is in LCE, then (G,H) is in PCE.

59

Proof. If (G′,H′) is in LCE, then there exists a monomial matrixM′ ∈Mn′ and an invertible

matrix S′ ∈ GLk+1 such that S′G′M′ = H′. By Corollary 4.13, we know thatM′ is comprised

of three block matrices M1 ∈ Mn, M2 ∈ Mnm, and M3 ∈ Mnm+1 which act exclusively

on the first n, next nm, and last nm + 1 columns of G′, respectively. By Corollary 4.15,

we know that M1 = a · P for some unsigned permutation P ∈ Pn and non-zero scalar a.

By Lemma 4.14, the last row and last column of S′ contain only zeros, except in the last

entry. Let S ∈ GLk denote the top-left block submatrix of S′ consisting of the intersection of

the first k rows and k columns (see Figure 4.3). Since S′ must have a non-zero determinant,

this implies that S must be invertible. Then since a is non-zero, a · S is also an invertible

matrix.

By construction of G′ and H′, and the implications of Lemma 4.14 and Corollary 4.13,

we have the block matrix product SGM1 = H. Then for the matrices (a · S) and P,

(a · S)GP = S G (a ·P) = SGM1 = H.

Therefore, (G,H) is in PCE.

For the reverse direction of Theorem 4.5, the proof is nearly identical to the one for LCE,

but with the assumption that all non-zero scalars are restricted to the set of signs {−1,+1}.

4.2 Future Directions

Our results imply that the CE variants PCE, SPCE, and LCE are computationally equiva-

lent, from the perspective of polynomial-time algorithms. In particular, we have shown that

LCE and SPCE are at least as hard as PCE. So, to study the hardness of the former two

problems, it suffices to consider the hardness of PCE. We now have more reductions among

the CE variants, and in consequence, from these variants to LIP. It remains, however, an

open problem to reduce LIP to any CE problem. While there has been some small progress

in this direction, namely Ducas and Gibbons’ Turing reduction from LIP for Construction A

lattices to SPCE for codes with zero hull [DG23], no other progress has yet been made.

Another interesting open problem is to improve the runtime of the reduction from LCE

to PCE proven in [SS13a] from poly(n, q) to poly(n, log q). In light of our results, this would

give a tighter equivalence between LCE and PCE. The reduction from [SS13a] requires time

polynomial in the alphabet size q because the closure (as described in Chapter 4) increases

the block length of the codes from n to (q− 1)n. Any reduction running in log q time would

either need to use a new type of closure that requires only a log q increase in block length,

or a more efficient way to transform scalar multiplication operations into permutations.

60

CHAPTER 5

List-Decoding

Generalized Reed-Solomon Codes

Based on joint work with Chris Peikert.

The concept of list-decoding was introduced independently by Elias [Eli57] and Wozen-

craft [Woz58] to enable decoding from a large amount of error that causes ambiguity in

determining the original codeword. The goal of list-decoding is to find all possible code-

words within a certain distance of a received word. The size of the list of possible codewords

can be limited so that the list can be efficiently searched. While list-decoding began as a

problem of improving reliable communication, it has found numerous applications through-

out computer science.

Reed-Solomon codes are a family of codes that have found applications in many areas and

are widely used in practice for data transmission and wireless communication. In their sem-

inal work [GS99], Guruswami and Sudan presented an algorithm that efficiently list-decodes

Reed-Solomon codes from errors in the Hamming metric. The Guruswami-Sudan (GS) algo-

rithm was later extended by Guruswami in [Gur01] and Koetter and Vardy in [KV03] into

a soft-decision algorithm, which takes as input a vector of “weights” that can indicate the

likelihood that a symbol was transmitted in a particular coordinate. In this work, we will

focus on a more general family of codes, called (Generalized) Reed-Solomon (GRS) codes

(see Definition 2.3 for formal definition).

Prior Work. There has been some work on decoding GRS codes from error not measured

in Hamming distance. Roth and Siegel in[RS94] presented a unique-decoding algorithm for

decoding from discrete errors in the Lee metric, which is a generalization of the Hamming

metric equivalent to the ℓ1 norm with wrap-around. Their algorithm applies to a certain

type of GRS codes and a larger class of codes they call (shortened) BCH codes. Recently,

Mook and Peikert in [MP22] presented a list-decoding algorithm for the ℓ2 norm, which uses

61

the GS algorithm as a black box. Their results are stated for a family of subfield subcodes

of Reed-Solomon codes, called BCH codes, but apply more generally to GRS codes.

Our Contributions. In this work, we present an algorithm based on the GS soft-decision

algorithm that list-decodes Generalized Reed-Solomon codes from error in the ℓp (quasi)norm

for any 0 < p ≤ 2 (see Section 2.1 for definition). Our algorithm translates a given received

word into a weight vector parameterized by a function that, conceptually, matches the chan-

nel’s probability density function (even if the channel is adversarial). For each coordinate of

the received word, this assigns weights to all possible symbols in the alphabet so that the

ones closest to the received coordinate have the largest weight but all symbols have non-zero

weight. In contrast, the algorithm in [MP22] only considers the two neighboring symbols.

Our algorithm achieves a better rate-distance trade-off than the prior algorithms for ℓ1

and ℓ2 described above. For p = 2, our algorithm works for arbitrarily large decoding

distance and for larger rates than the one from [MP22] when the relative distance is at least

a quantity slightly larger than half (see Section 5.3.2 for details). For p = 1, our algorithm

can list-decode a more general family of GRS codes from continous error for arbitrarily large

decoding distances, while the previous algorithm from [RS94] could only unique-decode from

discrete error. Our algorithm works for larger rates for any relative distance slightly larger

than three-quarters (see Section 5.4.2 for details).

In addition to decoding worst-case errors incurred by an adversarial channel, our algorithm

also works for average-case errors produced by a probabilistic channel. A simple approach

is to bound random error with high probability and then apply a worst-case algorithm. To

our knowledge, ours is the first algorithm to list-decode GRS codes from average-case errors

in ℓp (quasi)norms that outperforms this trivial approach.

62

[MP22]

Rwc
*,(2)(δ)

Rac
*,(2)(r)

0.5 1.0 1.5 2.0 2.5
δ 

r

2π

0.2

0.4

0.6

0.8

1.0

[RS94]

Rwc
*,(1)(δ)

Rac
*,(1)(r)

0.5 1.0 1.5 2.0 2.5
δ 

r

2

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Plots of the adjusted rate R∗,(p), as a function of the relative ℓp decoding dis-
tance δ = d/n1/p or corresponding channel error width r = p1/p ·cp ·δ, for which our algorithm
can list decode GRS codes in the worst case (wc) or average case (ac), respectively, for p = 2
(left) and p = 1 (right). (For simplicity, these plots assume a field size q ≫ δ, r.) For
comparison, also shown are the corresponding functions from the prior work on list decoding
GRS codes in the ℓ2 norm [MP22], and for unique decoding a special subclass of GRS codes
in the ℓ1 norm [RS94].

5.1 List-Decoding Reed–Solomon Codes

5.1.1 Soft-Decision Decoding

To list-decode Reed–Solomon codes under various norms and probabilistic channel models,

we use the “weighted,” or soft-decision, list decoder of Guruswami and Sudan (hereafter

GS) [GS99], as elaborated upon in Guruswami’s thesis [Gur01, Section 6.2.10] and the work

of Koetter and Vardy [KV03]. A soft-decision decoder takes a “weight vector” as input, and

outputs a set of codewords.

Definition 5.1. A weight vector for an n-length code over Fq is some W := (W1, . . . ,Wn) ∈
[0, 1]qn where each block Wi ∈ [0, 1]q is indexed by Fq; equivalently, it is a function Wi : Fq →
[0, 1].

Conceptually, each block Wi of a weight vector may be thought of as specifying a (pos-

terior) probability distribution Πi over Fq, where Πi(x) is proportional to the probability

that the ith transmitted symbol was x ∈ Fq, given what was received from the channel

(which need not be an element of Fq). At a formal level, this interpretation makes sense

only when the channel is probabilistic (for average-case decoding), but it still serves as useful

intuition when the channel is adversarial (for worst-case decoding). We consider both types

of channels in our results below.

For c ∈ Fq, define [c] ∈ [0, 1]q to be the binary indicator vector indexed by Fq that has a 1

63

in coordinate c and 0s elsewhere. Similarly, for any vector c = (c1, . . . , cn) ∈ Fn
q , define the

weight vector [c] := ([c1], . . . , [cn]) ∈ [0, 1]qn. Observe that its Euclidean norm is ∥[c]∥ =
√
n.

Definition 5.2. The correlation between a weight vector W ∈ [0, 1]qn and a word c ∈ Fn
q is

defined as their length-normalized inner product (or the cosine of the angle between them):

corr(W, c) :=
⟨W, [c]⟩
∥W∥ ·

√
n
. (5.1)

Theorem 5.3 (adapted from [GS99, Theorem 18] and [Gur01, Theorem 6.21]). For a prime

power q, let C ⊆ Fn
q be a Generalized Reed–Solomon code of dimension k and adjusted rate

R∗ := (k − 1)/n. There is a deterministic algorithm that, given a weight vector W and a

“tolerance” τ > 0, outputs in time poly(n, q, 1/(τ∥W∥)) the set of all codewords c ∈ C that

satisfy

corr(W, c) ≥
√
R∗ + τ . (5.2)

We remark that the above theorem is originally stated for rational weights, but the

supporting argument (from [Gur01, Lemma 6.20]) easily adapts to handle real -valued weights

that can be lower bounded to any needed precision in polynomial time, as all of ours can be.

5.1.2 From Received Words to Weight Vectors

Here we describe a general approach for translating a received word to a weight vector.

This translation is parameterized by a function that, conceptually, can be viewed as (pro-

portional to) the channel’s probability density function, even if the channel is not actually

probabilistic.

Let f : R→ [0, 1] be a function that satisfies Assumption 2.44, extended multiplicatively

to Rn as in Equation (2.1), and recall that fs(x) := f(x/s) for any constant s > 0. Next

let q be a positive integer, and recall that we identify Zq := Z/qZ with Fq in the natural

way when q is prime. Let the set of possible received values be Rq = R/qZ, and for any such

value y ∈ Rq, define the weight function Ws,y : Zq → [0, 1] by

Ws,y(x) := fs(y − x+ qZ) . (5.3)

Notice that here fs is applied to a coset of qZ, which represents an infinite series; for all our

concrete choices, these series converge and so the function Ws,y is well defined. This function

can also be seen as the vector Ws,y := (Ws,y(x))x∈Zq ∈ [0, 1]q, indexed by Zq.

In line with the probabilistic conception of weight vectors from Section 5.1.1 above, the

function Ws,y can be seen as follows. Suppose that a uniformly random symbol in Zq is

64

sent over a channel, which adds (modulo q) noise drawn from a distribution over R whose

probability density function is proportional to fs. Then the probability that the sent symbol

was x ∈ Zq, conditioned on receiving y, is proportional to Ws,y(x). This is because the coset

y−x ∈ Rq is the set of all noise values that yield y if x is sent. Note that in the definition of

Ws,y we do not normalize by the total weight Ws,y(Zq) = fs(y + Z) (which may vary based

on the received value y); this turns out to yield simpler analyses and tighter results in the

end.

Definition 5.4. For a function fs as above and any received vector y = (y1, . . . , yn) ∈ Rn
q ,

define the corresponding weight vector as

Ws,y := (Ws,y1 , . . . ,Ws,yn) ∈ [0, 1]nq . (5.4)

In order to use the soft-decision algorithm (Theorem 5.3) for decoding under an adversarial

channel, it suffices to show that we can choose a suitable s so that for any received word y

and any sufficiently close codeword c (in the norm of interest), the correlation corr(Ws,y, c)

satisfies (5.2). Similarly, for decoding under a probabilistic channel, it suffices to show that

with high probability over the channel noise e, the transmitted codeword c has large enough

correlation with the weight vector Ws,y of the received word y = c + e (again, for some

suitably chosen s). To this end, in what follows we give a lower bound on ⟨Ws,y, [c]⟩ and an

upper bound on ∥Ws,y∥, in terms of fs and the difference y − c between the received word

and the codeword of interest.

5.1.3 Main Theorem

Here we state and prove the main result of this section. For this we define the two-

dimensional integer lattice Lq that consists of all shifts of the lattice qZ2 by (z, z) for an

integer z, i.e.,

Lq :=
⋃
x∈Zq

(x⊕ x) =
⋃
z∈Z

((z, z) + qZ2) ⊃ qZ2. (5.5)

We have that det(Lq) = q, and so det(L∗q) = 1/q. We sometimes omit the q subscript when

it is clear from context or its value is unimportant.

Theorem 5.5. For any s > 0 and y ∈ Rn
q defining W = Ws,y, and any c ∈ Zn

q ,

corr(W, c) ≥
Avgi∈[n][fs(yi − ci)]√

fs(Lq)
≥ fs(y − c)1/n√

fs(Lq)
.

65

Proof. This follows immediately from the following lower and upper bounds on the numerator

and denominator of corr(W, c) = ⟨W,[c]⟩/n
∥W∥/

√
n
. For the numerator, by the definitions ofW and [c],

⟨W, [c]⟩ /n = Avg
i∈[n]

[Ws,yi(ci)] = Avg
i∈[n]

[fs(yi − ci)] ≥ fs(y − c)1/n ,

where the last step follows by the inequality of arithmetic and geometric means, and the

non-negativity and multiplicativity of fs over direct sums of cosets (Lemma 2.1). For the

denominator, the upper bound ∥W∥/
√
n ≤

√
fs(Lq) is proved in Lemma 5.7 below.

Remark 5.6. If certain coordinates of y are “very far” from the corresponding entries of c, we

may get a better lower bound on corr(W, c) by restricting to “good” coordinates. Specifically,

for any nonempty G ⊆ [n] of cardinality g = |G|, by the non-negativity of fs,

Avg
i∈[n]

[fs(yi − ci)] ≥
g

n
· Avg

i∈G
[fs(yi − ci)] ≥

g

n
· fs(yG − cG)

1/g ,

where xG is the vector obtained by restricting x to the coordinates in G.

Lemma 5.7. Adopting the notation from Theorem 5.5, and letting ε̃ = εLq ,s(H) where

H = span(1, 1),

∥W∥2/n ∈ fs(Lq) ·
[1− ε̃

1 + ε̃
, 1
]
.

Proof. By definition of W ,

∥W∥2/n = Avg
i∈[n]

[∑
x∈Zq

fs(yi − x)2
]
.

To bound this, let y ∈ Rq be arbitrary. By Lemma 2.1,∑
x∈Zq

fs(y − x)2 =
∑
x∈Zq

fs((y − x)⊕ (y − x))

=
∑
x∈Zq

fs((y ⊕ y)− (x⊕ x))

= fs((y, y) + Lq)

∈ fs(Lq) ·
[1− ε̃

1 + ε̃
, 1
]
,

where the last step follows by the latter part of Lemma 2.46 on the lattice Lq with subspaceH,

and noting that (y, y) ∈ H. The claim follows by averaging over i ∈ [n].

66

5.1.4 Average-Case Decoding

Here we consider list-decoding in the average case, where the channel is probabilistic (not

worst case) and the goal is to output a list of codewords that includes the transmitted one.

We consider channels that add independent, identically distributed random error (drawn

from some specified distribution) to each coordinate of the transmitted codeword; this is

often known as a memoryless additive channel. Specifically, we assume that the channel’s

error distribution (for each coordinate) is proportional to fr for some r > 0, i.e., it has

probability density function

Dr(x) :=
fr(x)

f̂r(0)
. (5.6)

For example, if fr is a Gaussian function, this is known as the additive white Gaussian

noise (AWGN) channel model. In some settings one may also consider a discrete channel

distribution, e.g., over Z, in which case its probability mass function is Dr(x) := fr(x)/fr(Z).
For any s > 0 (which may differ from r), define

µr,s := E
e←Dr

[fs(e)] . (5.7)

In Section 5.2 we will use the following bound for a specific family of functions f to show

that the transmitted codeword is recovered with high probability over the channel error.

Lemma 5.8. For any r, s > 0 and T defining γ := µr,s − T ·
√

fs(Lq) ≥ 0, and any c ∈ Zn
q ,

Pr
e←Dn

r

[
corr(Ws,c+e, c) ≤ T

]
< exp(−2γ2n) .

Proof. The error coordinates ei are drawn independently from Dr, so by Assumption 2.44

the values fs(ei) are independent and identically distributed random variables in [0, 1], with

expected value µr,s. Then by Theorem 5.5 and Hoeffding’s inequality (Lemma 2.30),

Pr
e
[corr(Ws,c+e, c) ≤ T] ≤ Pr

e

[
Avg
i∈[n]

[fs(ei)] ≤ T ·
√

fs(Lq)
]

< exp(−2γ2n) .

67

5.2 General ℓp (Quasi)Norms

For any p > 0, define ∥x∥p :=
(∑n

i=1 |xi|p
)1/p

for x ∈ Rn. It is well known that this is

a norm if and only if p ≥ 1, and is a quasinorm for any p > 0.1 In this section we define

weight vectors via Definition 5.4 using the function f : R→ [0, 1] defined as

f(x) = f (p)(x) := exp
(
−(cp |x|)p

)
(5.8)

where cp := 2 · Γ(1 + 1/p) ,

where the gamma function Γ(z) =
∫∞
0

uz−1 exp(−u) du for z > 0, and satisfies Γ(1) = 1 and

Γ(1 + z) = z · Γ(z). As two important examples, c1 = 2 and c2 =
√
π.

Note that by multiplicativity (Equation (2.1)),

f(x) =
n∏

i=1

f(xi) = exp
(
−

n∑
i=1

(cp |xi|)p
)
= exp

(
−(cp∥x∥p)p

)
= f(∥x∥p) .

Regarding the Fourier transform of f , the “normalizing” constant cp has been defined to

make f̂(0) = 1:

f̂(0) =

∫ ∞
−∞

f(x) dx = 2

∫ ∞
0

exp
(
−(cpx)p

)
dx =

2

p · cp

∫ ∞
0

u1/p−1 exp(−u) du =
2 · Γ(1/p)

p · cp
= 1 ,

by the change of variable u = (cpx)
p. It is also known that f̂ is non-negative for 0 < p ≤ 2;

this follows immediately from an elegant lemma and proof due to Logan, given in [EOR91,

Lemma 5]. For p > 2 this is no longer the case; this fact prohibits our framework from

supporting ℓp norms for larger values of p. So, f satisfies Assumption 2.44 for such p. Another

immediate consequence of Logan’s lemma is that as s grows, f̂s(w)/s strictly decreases and

approaches zero for every w ̸= 0.

We will need the following simple lemma.

Lemma 5.9. For any s > 0 and y ∈ Rn
q defining W = Ws,y, we have that ∥W∥2 ≥√

n/ exp(cpp/(2s)
p).

Proof. Observe that each of the n blocks ofW has an entry indexed by some x ∈ Zq for which

|yi − x| ≤ 1/2. This entry’s contribution to ∥W∥2 is at least fs(1/2)2 = exp(−2cpp/(2s)p).
1A quasinorm relaxes the triangle inequality axiom to require only that ∥x+y∥ ≤ K(∥x∥+∥y∥) for some

fixed K. We do not use the triangle inequality, or even its relaxation, so we can consider p < 1.

68

5.2.1 Worst-Case Decoding

We now address list-decoding in the ℓp (quasi)norm for 0 < p ≤ 2, under worst-case error.

Consider decoding distance d = δ ·n1/p, where n is the code length, and δ can be seen as the

relative decoding distance (relative to n1/p, which is the most natural normalization factor

for ℓp). For s > 0, relative distance δ ≥ 0, and positive integer modulus q, define

B
(p)
q,δ (s) :=

fs(δ)√
fs(Lq)

=
exp
(
−(cp · δ/s)p

)√
fs(Lq)

≥ 0 . (5.9)

By Theorems 5.3 and 5.5, to decode a GRS code of adjusted rate R∗ over a prime field Fq

to within ℓp distance δ ·n1/p using the GS algorithm, it suffices to set s > 0 so that B
(p)
q,δ (s) >√

R∗. In other words, we can decode under relative distance δ for any R∗ less than

R∗,(p)wc,q (δ) := sup
s>0

B
(p)
q,δ (s)

2 . (5.10)

The following theorem makes this formal.

Theorem 5.10. For any 0 < p ≤ 2, δ ≥ 0, and prime q, the GS soft-decision algorithm

using weight vector given by f
(p)
s for any s > 0 list-decodes, up to ℓp distance d = δ · n1/p,

any GRS code C ⊆ Fn
q with adjusted rate R∗ < B

(p)
q,δ (s)

2, in time polynomial in n, q, and

exp(1/sp)/(B
(p)
q,δ (s)−

√
R∗).2

Proof. We invoke the GS algorithm on the weight vector W = Ws,y given by the choice

of s and the received word y, and tolerance τ = B
(p)
q,δ (s) −

√
R∗ > 0.3 The running time is

polynomial in n, q, and 1/(τ∥W∥2) ≤ exp(cpp/(2s)
p)/(τ

√
n), by Lemma 5.9.

Now let c ∈ C be a codeword within distance d of y, i.e., ∥y − c∥p ≤ d. By Theorem 5.5,

Assumption 2.44, and Equation (5.9),

corr(W, c) ≥ fs(y − c)1/n√
fs(Lq)

≥ fs(d)
1/n√

fs(Lq)
= B

(p)
q,δ (s) =

√
R∗ + τ .

So, by Theorem 5.3, the output of the GS algorithm includes c, as needed.

Remark 5.11. Following Remark 5.6, suppose that the received word y is within relative

distance δ of a codeword c on some subset G ⊆ [n] of g = |G| coordinates, i.e., ∥yG − cG∥ ≤
2We remark that in many cases, the bound on the polynomial running time can be improved using a

better lower bound for ∥W∥2, such as the one given by Lemma 5.7.
3To be more precise, we can invoke GS on any approximation of τ in [τ/2, τ], say. This can be computed

by approximating fs(Lq) from above to the needed precision, by enumerating sufficiently many points of Lq

near the origin, and upper-bounding the contribution of the remaining points in the “tails” using, e.g.,
Lemma 5.18.

69

δ · g1/p, and the remaining coordinates of y may be arbitrary. Then corr(Ws,y, c) ≥ (g/n) ·
B

(p)
q,δ (s). So, we can list-decode all such codewords as long as the adjusted rate R∗ < (g/n)2 ·

R
∗,(p)
wc,q (δ).

Remark 5.12. Interestingly, as δ, q/δ, and n grow (and the other parameters remain fixed),

the product of the relative distance δ and the adjusted rate R∗ for which we can decode

approaches the relative radius of a unit-volume ℓp ball. To see this, first observe that as q/s

grows, fs(Lq) approaches

fs(Lq ∩ span(1, 1)) =
∑
z∈Z

fs(z, z) =
∑
z∈Z

fs/21/p(z) = fs/21/p(Z) = f̂s/21/p(Z) ,

where the last equality is by the PSF (Lemma 2.26). Then as s grows, the above approaches

s/21/p, because f̂(0) = 1 and hence f̂s/21/p(0) = s/21/p by Lemma 2.25, and the other Fourier

coefficients approach zero.

So, as s and q/s grow, the bound B
(p)
q,δ (s)

2 on the adjusted rate approaches 21/p ·
exp
(
−(21/pcp · δ/s)p

)
/s. A straightforward calculation using the change of variable t =

(21/pcp · δ/s)p shows that this is maximized for t = 1/p (and hence s = (2p)1/pcp · δ), so we

can decode to within relative ℓp distance δ for an adjusted rate R∗ approaching

1

(ep)1/p · cp · δ
.

By comparison, it is known that the volume of an n-dimensional ℓp ball of unit relative

radius (i.e., radius n1/p) has nth root

2 · Γ(1 + 1/p)

Γ(1 + n/p)1/n
· n1/p −→ (ep)1/p · cp ,

using Stirling’s approximation for the denominator as n grows. So, the relative radius of a

unit-volume ℓp ball is the reciprocal of this, which is what R∗ · δ approaches.

5.2.2 Average-Case Decoding

We now consider average-case decoding under a memoryless additive (continuous or dis-

crete) channel whose density function is proportional to a scaling of f = f (p). Specifically,

we consider the continuous distribution with probability density function Dr(x) := fr(x)/r,

and the discrete distribution over Z with probability mass function Dr(x) := fr(x)/fr(Z).

70

Following Section 5.1.4, for any r, s > 0 define

µ(p)
r,s := µr,s = E

e←Dr

[fs(e)] .

For these channel distributions we derive suitable bounds on µ
(p)
r,s , then reach the conclusion

via Lemma 5.8 and Theorem 5.3.

Lemma 5.13. For any 0 < p ≤ 2, any r > 0 defining a continuous or discrete distribu-

tion Dr, and s > 0,

µ(p)
r,s ≥

s

∥(r, s)∥p
,

with equality in the continuous case and strict inequality in the discrete case.

Proof. First note that for t := (rs)/(rp + sp)1/p, we have fr(x) · fs(x) = ft(x), since 1/tp =

1/rp + 1/sp. For the continuous case,

µ(p)
r,s =

∫
R
Dr(e) · fs(e) de =

1

r

∫
R
ft(e) de =

t

r
=

s

∥(r, s)∥p
.

For the discrete case, since t < r, we have that f̂t(w)/t > f̂r(w)/r for all w ∈ Z, so by

Lemma 2.26,

µ(p)
r,s =

∑
e∈Z

Dr(e) · fs(e) =
ft(Z)
fr(Z)

=
t

r
· f̂t(Z)/t
f̂r(Z)/r

>
t

r
.

Now, for any channel parameter r > 0 and for s > 0, define

A(p)
q,r(s) :=

µ
(p)
r,s√

fs(Lq)
≥ s

∥(r, s)∥p ·
√

fs(Lq)
, (5.11)

where the inequality is by Lemma 5.13. By Theorems 5.3 and 5.5, to decode (with high

probability) a GRS code of adjusted rate R∗ over a prime field Fq under a channel with

parameter r, it suffices to set s > 0 so that A
(p)
q,r(s) >

√
R∗. In other words, we can decode

under channel parameter r for any R∗ less than

R∗,(p)ac,q (r) := sup
s>0

A(p)
q,r(s)

2 . (5.12)

See Theorem 5.14 below for the formal statement.

We remark that Theorem 5.14 outperforms Theorem 5.10 (for worst-case decoding) by a

factor that approaches (e/2)1/p in the adjusted rate R∗ it can handle, as r and q/r grow.

71

Specifically, consider a channel with parameter r. A calculation reveals that its relative error

(in the ℓp norm, relative to n1/p) is tightly concentrated around δ = r/(p1/p · cp), so following

the analysis in Remark 5.12, Theorem 5.10 applies for R∗ that approaches 1/(r · e1/p). By

comparison, Theorem 5.14 applies for R∗ that approaches 1/(r · 21/p).

Theorem 5.14. Let 0 < p ≤ 2, r > 0, α ∈ (0, 1), and q be prime. Under a memoryless ad-

ditive (continuous or discrete) channel with distribution Dr, the GS soft-decision algorithm,

using weight vector given by f
(p)
s for any s > 0, list-decodes any GRS code C ⊆ Fn

q with

adjusted rate R∗ < A
(p)
q,r(s)2, in time polynomial in n, q, and exp(1/sp)/(A

(p)
q,r(s) −

√
R∗),

except with probability less than

exp
(
−2n · fs(Lq) · α2 ·

(
A(p)

q,r(s)−
√
R∗
)2)

.

Proof. Throughout the proof let A(s) := A
(p)
q,r(s). We invoke the GS algorithm on the

weight vector W = Ws,y given by the choice of s and the received word y, and tolerance

τ = T −
√
R∗ > 0, where

T = A(s)− α(A(s)−
√
R∗) (5.13)

=
√
R∗ + (1− α)(A(s)−

√
R∗) ∈ (

√
R∗, A(s)) . (5.14)

The running time is polynomial in n, q, and 1/(τ∥W∥2) ≤ exp(cpp/(2s)
p)/(τ

√
n), by

Lemma 5.9.

Now suppose that y = c+e, where c ∈ C is the transmitted codeword and e← Dn
r is the

channel error. To show that the list output by the GS algorithm contains c with the claimed

probability, by Theorem 5.3 it suffices to show that corr(W, c) ≥
√
R∗ + τ = T . Following

the setup of Lemma 5.8, let

γ = µr,s − T ·
√

fs(Lq)

=
√
fs(Lq) · (A(s)− T) (Equation (5.11))

=
√
fs(Lq) · α(A(s)−

√
R∗) > 0 (Equation (5.13)).

So, by Lemma 5.8, Pre[corr(W, c) < T] < exp(−2γ2n), which yields the claim.

Remark 5.15. Following Remark 5.6, and similarly to Remark 5.11, suppose that there exists

a subset G ⊆ [n] of g = |G| “good” coordinates for which the channel generates the received

word y from the transmitted codeword c by adding independent noise from distribution Dr

on those coordinates, and sets the remaining coordinates arbitrarily. Then our lower bound

72

on corr(Ws,y, c) from Theorem 5.5 involves an extra g/n factor and an average over just the

coordinates in G. So, we can correctly list-decode for any adjusted rate R∗ < (g/n)2 ·A(p)
q,r(s)2.

More precisely, the statement and proof of Theorem 5.14 hold with every occurrence ofA
(p)
q,r(s)

having an additional g/n factor, and with g in place of n in the failure probability.

5.3 The ℓ2 Norm and Gaussian Error

In the remainder of the paper we instantiate our general list-decoding results for ℓp norms

(Theorems 5.10 and 5.14) for specific norms of interest and memoryless additive channels.

In this section, we consider the ℓ2 norm and Gaussian channels.

We specialize Equation (5.8) to p = 2, i.e., the Gaussian function

f(x) := f (2)(x) = exp(−πx2) .

By a straightforward calculation it can be seen that this function is its own Fourier transform:

f̂ = f . Note that f̂s = s · f1/s by the time-scaling property of the Fourier transform

(Lemma 2.24). Finally, recalling that f(x) = f(∥x∥2), we get that f is invariant under

rotations.

5.3.1 Bounds

In this subsection we derive fairly tight bounds on the factor fs(Lq) that appears in the

quantities that govern the adjusted rates under which we can decode in the worst and average

cases (Equations (5.9) and (5.11), respectively). For this purpose we need to define a suitable

“fudge factor.” For r ≥ r0 :=
√

ln(4)/π ≈ 0.66428, define

E(r) := 1− 2 exp(−πr2/2) ∈ [0, 1) . (5.15)

Notice that E(r) is positive for r > r0, is strictly increasing, and rapidly approaches 1 as r

increases. Next, for real s, q such that s ∈ [r0, q/r0], define

Eq(s) :=
√
E(q/s) · E(s) ∈ [0, 1) . (5.16)

Similarly, Eq(s) is positive for s ∈ (r0, q/r0), and rapidly approaches 1 as both s, q/s increase.

Lemma 5.16. For any real s and positive integer q such that s ∈ (r0, q/r0),

1

fs(Lq)
>

√
2

s
· Eq(s)

2 .

73

Proof. This follows directly from Lemmas 5.17 and 5.19 below. Specifically, let ε′ = εZ,q/(s
√
2)

and ε̃ = εLq ,s(H). By Lemma 5.19 (applied twice, with r = q/s and r = s, which are both

greater than r0),
1

(1 + ε′)(1 + ε̃)
> Eq(s)

2 .

The result then follows by Lemma 5.17.

Lemma 5.17. For any real s > 0 and positive integer q, let ε′ = εZ,q/(s
√
2) and ε̃ = εLq ,s(H)

where H = span(1, 1). Then

fs(Lq) =
s√
2
· (1 + ε′) · (1 + ε̃) .

Proof. Recall that L = Lq has determinant det(L) = q, hence its dual has determinant

det(L∗) = 1/q. A basis for L consists of the vectors (1, 1) and (q, 0), and its dual basis

consists of the vectors (0, 1) and (1,−1)/q.
Since H⊥ = span(1,−1), we have that L∗∩H⊥ consists merely of all the integer multiples

of the dual basis vector (1,−1)/q, which has Euclidean norm
√
2/q. Therefore, L∗ ∩H⊥ is

a rotation of (
√
2/q)Z. So,

fs(L) = (1/q) · f̂ 2
s (L∗ ∩H⊥) · (1 + ε̃) (Lemma 2.46 and definition of ε̃)

= (s2/q) · f 2
1/s(L∗ ∩H⊥) · (1 + ε̃) (Lemma 2.24)

= (s2/q) · fq/(s√2)(Z) · (1 + ε̃) (rotational invariance of f 2, rescaling)

= (s/
√
2) · (1 + ε′) · (1 + ε̃) (Lemma 2.46 and definition of ε′).

Next we bound the roughness quantities ε′, ε̃ from Lemmas 5.16 and 5.17, using the

following classic tail inequality.

Lemma 5.18 (adapted from [Ban95, Lemma 2.4]). For any lattice L, unit vector u, and

s, t > 0, let Tu,t = {x : |⟨x,u⟩| ≥ t}. Then

fs(L ∩ Tu,t) < 2 exp(−πt2/s2) · fs(L) .

Lemma 5.19. Let r > r0 and H = span(1, 1). Then

1

1 + εZ,r/
√
2

,
1

1 + εLq ,r(H)
> E(r) = 1− 2 exp(−πr2/2) .

74

Proof. We first bound εZ,r/
√
2. Let s = r/

√
2 >

√
ln(2)/π. By the definition of roughness

(Definition 2.45) and the facts that Z∗ = Z, f̂s = s · f1/s (Lemma 2.24), and f1/s(0) = 1,

1 + εZ,s = f̂s(Z)/f̂s(0) = f1/s(Z) .

Now, by Lemma 5.18 and rearranging (where the denominator is positive due to the lower

bound on s),

f1/s(Z) = f1/s(0) + f1/s(Z ∩ T1,1) < 1 + 2 exp(−πs2) · f1/s(Z) ≤
1

1− 2 exp(−πs2)
,

which yields the claim.

For εL,r(H) where L = Lq, again by Definition 2.45 and Lemma 2.24,

1 + εL,r(H) =
f̂r(L∗)

f̂r(L∗ ∩H⊥)
=

f1/r(L∗)
f1/r(L∗ ∩H⊥)

.

Because H⊥ = span(1,−1) and the vectors (0, 1), (1,−1)/q form a basis of L∗, every point

in L∗ lies one of the lines (i.e., affine subspaces) Lk = k ·(1, 0)+H⊥ for some k ∈ Z. The unit
vector u = (1, 1)/

√
2 is orthogonal to H⊥, so for any x ∈ Lk, we have that ⟨x,u⟩ = k/

√
2,

and hence |⟨x,u⟩| ≥ 1/
√
2 if k ̸= 0. Therefore, L∗ can be partitioned as the disjoint union

L∗ = (L∗ ∩H) ∪ (L∗ ∩ Tu,1/
√
2) .

So, by Lemma 5.18 and rearranging (where again the denominator is positive due to the

bound on r),

f1/r(L∗) = f1/r(L∗ ∩H) + f1/r(L∗ ∩ Tu,1/
√
2)

< f1/r(L∗ ∩H) + 2 exp(−πr2/2) · f1/r(L∗)

≤
f1/r(L∗ ∩H)

1− 2 exp(−πr2/2)
.

The result follows by dividing f1/r(L∗ ∩H) by both sides.

5.3.2 Worst-Case Decoding

We now address list-decoding in the ℓ2 norm, under worst-case error of bounded norm,

by specializing the material of Section 5.2.1 to p = 2 and using our bounds on fs(Lq) from

Section 5.3.1. So, we consider decoding distance d = δ
√
n, where n is the code length and δ

75

is the relative decoding distance. Then by Equations (5.9) and (5.10), we can list-decode for

any R∗ less than

R∗,(2)wc,q (δ) = sup
s>0

B
(2)
q,δ (s)

2 > sup
s∈(r0,q/r0)

√
2 · exp(−2πδ2/s2)

s
· Eq(s)

2 , (5.17)

where the inequality follows by Lemma 5.16.

Corollary 5.20 below is obtained by nearly maximizing the right-hand side of (5.17).

More specifically, a standard calculation shows that taking s = δ
√
4π maximizes the “main

term”
√
2 · exp(−2πδ2/s2)/s, to have value 1/(δ

√
2πe). For moderate or larger values of δ

(and hence s), this very nearly maximizes the entire expression, because Eq(s) ≥ E(s) since

q/s ≥ s, and E(s) rapidly approaches 1 as s grows. For example, E(s)2 ≥ 1−10−8 for δ ≥ 1.

So, as δ grows, the R∗ for which we can list-decode rapidly approaches 1/(δ
√
2πe).

Corollary 5.20. For any δ >
√

ln(4)/(2π) ≈ 0.1874 and prime q ≥ 4πδ2, the GS algorithm

using weight vector given by fs for s = δ
√
4π list-decodes, up to ℓ2 distance δ

√
n in time

poly(n, q, 1/(

√
R̃
∗,(2)
wc,q (δ)−

√
R∗)), any GRS code with adjusted rate

R∗ < R̃∗,(2)wc,q (δ) :=
1

δ
√
2πe
· Eq(δ

√
4π)2 .

Proof. For s = δ
√
4π, the lower bounds on δ and q imply that s = δ

√
4π ∈ (r0, q/r0). Then

by hypothesis and Lemma 5.16 and Equation (5.9),

R∗ <
1

δ
√
2πe
· Eq(δ

√
4π)2 <

exp(−2πδ2/s2)
fs(Lq)

= B
(2)
q,δ (s)

2 .

The claim then follows directly by Theorem 5.10.

Comparison to [MP22]. The previous best result for list-decoding (Generalized) Reed–

Solomon codes in the ℓ2 norm was given by Mook and Peikert [MP22].4

Proposition 5.21 ([MP22, Theorem 3.4]). For any GRS code C ⊆ Fn
q with any adjusted

rate R∗ < 1 and any ε > 0, there is a poly(n, q, 1/ε)-time algorithm that list-decodes C up

to ℓ2 distance d =
√

n(1−R∗)(1− ε)/2.

Equivalently, for a relative decoding distance δ = d/
√
n > 0, the result from [MP22]

4By a standard reduction, the result from [MP22] also applies to GRS codes, not just RS codes as was
originally stated.

76

works for adjusted rates R∗ approaching 1− 2δ2, so it applies only for

δ ≤
√

(1−R∗)/2 ≤ 1/
√
2 .

By contrast, our Theorem 5.10 works for any (arbitrarily large) δ > 0 (and Corollary 5.20

gives a simpler and more explicit rate bound for any δ > 0.1875). Moreover, for those δ for

which both Theorem 5.10 and Proposition 5.21 apply, our result works for a larger R∗ as

long as R
∗,(2)
wc,q (δ) > 1 − 2δ2 (see (5.10)). For typical (moderate or larger) q, this holds for

all δ ⪆ 0.51797, which corresponds to R∗ ⪅ 0.46342. (For tiny δ ≈ 0, Theorem 5.10 works

for R∗ ≈ 0.93700, whereas [MP22] works for R∗ ≈ 1, so the latter is better for very small

distances.)

We also point out that [MP22] proves that for any δ ≤ 1/2, which corresponds to R∗ ≥
1/2, its (very simple) choice of weight vector gives an optimal tradeoff between δ and R∗ for

the GS/KV soft-decision algorithm and analysis. However, the optimality argument breaks

down for δ > 1/2 (equivalently, for R∗ < 1/2). And indeed, as we have just seen, we

obtain a better distance-rate tradeoff than [MP22] for almost all such δ. This highlights

the interesting question of determining an optimal choice of weights for the GS soft-decision

algorithm for δ > 1/2 (especially at the low end of this range).

5.3.3 Average-Case Decoding

We now consider average-case decoding under a memoryless additive (continuous or dis-

crete) Gaussian channel, by specializing the material of Section 5.2.2 to p = 2 and using

our bounds on fs(Lq) from Section 5.3.1. Consider a Gaussian channel of parameter r > 0.

Then by Equations (5.11) and (5.12), we can list-decode for any R∗ less than

R∗,(2)ac,q = sup
s>0

A(2)
q,r(s)

2 > sup
s∈(r0,q/r0)

s
√
2

r2 + s2
· Eq(s)

2 , (5.18)

where the inequality is by Lemma 5.16.

Corollary 5.22 below is obtained by nearly maximizing the right-hand side of (5.18). More

specifically, setting s = r maximizes the “main term” s
√
2/(r2 + s2), to have value 1/(r

√
2).

As above, for moderate or larger values of r (and hence s), this very nearly maximizes the

entire expression, because Eq(s) rapidly approaches 1 as s grows.5 So, as r grows, the rate R∗

for which we can list-decode rapidly approaches 1/(r
√
2).

5By contrast, Eq(s)≪ 1 for values of s very close to r0, in which case the bound is maximized by taking s
somewhat larger than r.

77

Corollary 5.22. For any r ∈ (r0, q/r0), α ∈ (0, 1), and prime q, the GS algorithm using

weight vector given by fr list-decodes, in time poly(n, q, 1/(

√
R̃
∗,(2)
ac,q (r) −

√
R∗)), any GRS

code with adjusted rate

R∗ < R̃∗,(2)ac,q (r) :=
1

r
√
2
· Eq(r)

2 ,

except with probability less than exp
(
−
√
2n · α2 · r ·

(√
R̃
∗,(2)
ac,q (r)−

√
R∗
)2)

.

Proof. By hypothesis, Lemmas 5.13 and 5.16 and Equation (5.11),

R∗ <
1

r
√
2
· Eq(r)

2 <
µ2
r,r

fr(Lq)
= A(2)

q,r(r)
2 .

The claim then follows directly by Theorem 5.14, and the fact that fr(Lq) > r/
√
2 by

Lemma 5.17.

5.4 The ℓ1 Norm and Laplacian Error

In this section, we consider the ℓ1 norm and Laplacian channels. We specialize Equa-

tion (5.8) to p = 1, i.e., the Laplacian function

f(x) := f (1)(x) = exp(−2 |x|) .

(The Fourier transform of this function is given by f̂(w) = 1/(1 + (πw)2), but we will not

use this; as already noted earlier, f (1) satisfies Assumption 2.44.)

Throughout this section we use the hyperbolic tangent function

tanh(x) :=
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
< 1

and its reciprocal coth(x) = 1/ tanh(x) > 1. Observe that tanh(x) approaches 1 as x grows;

it also satisfies tanh(x) < x for all x > 0, and approaches x as x approaches zero.6

5.4.1 Bounds

In this subsection, we analyze the exact value of fs(Lq) and derive an asymptotic bound.

This appears in the quantities that govern the adjusted rates under which we can decode in

the worst and average cases (Equations (5.9) and (5.11), respectively). For this purpose, we

6Both facts can be seen from the Taylor series tanh(x) = x− x3/3 + · · · , valid for |x| < π/2.

78

define a suitable “fudge factor”. For any real x > 0, define

E(x) :=
(
coth(x) +

4x · e2x

(e2x − 1)2

)−1
∈ (0, 1) , (5.19)

where the upper bound comes from the fact that coth(x) > 1. Note that, as x grows, the

first term in the sum rapidly approaches one, and the second term rapidly approaches zero.

More precisely, a brief calculation reveals that

E(x) = 1−O(x · e−2x) . (5.20)

Lemma 5.23. For any s > 0 and positive integer q,

1

fs(Lq)
> tanh(2/s) · E(q/s) .

Note that by Equation (5.20), for any fixed s > 0, as q (or equivalently, q/s) grows,

1/fs(Lq) rapidly approaches tanh(2/s). In turn, this approaches 2/s as s grows.

Proof. This follows directly from Lemma 5.24 below and Equation (5.19). By Lemma 5.24,

the bound coth(2/s) > s/2, and the definition of E(x),

fs(Lq) < coth(2/s)
(
coth(q/s) +

2q · e2q/s

(e2q/s − 1)2
· 2
s

)
=

coth(2/s)

E(q/s)
.

The claim then follows by taking reciprocals.

Lemma 5.24. For any s > 0 and positive integer q,

fs(Lq) = coth(2/s) · coth(q/s) + 2q · e2q/s

(e2q/s − 1)2
.

Proof. By Lemma 2.1, we can write

fs(Lq) =
∑
v∈Lq

fs(v) =

q−1∑
x=0

fs((x, x) + qZ2) =

q−1∑
x=0

fs(x+ qZ)2.

79

Rewriting the term in the summation as a sum of two geometric series,

fs(x+ qZ) =
∑
w∈Z

fs(x+ qw)

=
∑
w≥0

exp
(
−2

s
|x+ qw|

)
+
∑
w<0

exp
(
−2

s
|x+ qw|

)
=
∑
w≥0

exp
(
−2

s
|x+ qw|

)
+
∑
w≥0

exp
(
−2

s
|x− q(w + 1)|

)
=
∑
w≥0

exp
(
−2

s
(x+ qw)

)
+
∑
w≥0

exp
(
−2

s
(q − x+ qw)

)
=

e−2x/s + e−2(q−x)/s

1− e−2q/s
.

Substituting this term in the summation, we obtain

fs(Lq) =

q−1∑
x=0

(e−2x/s + e−2(q−x)/s

1− e−2q/s

)2
=

1

(1− e−2q/s)2
·
q−1∑
x=0

(
e−4x/s + e−4(q−x)/s + 2e−2q/s

)
=

1

(1− e−2q/s)2
·
(
2q · e−2q/s + e4/s(1− e−4q/s)

e4/s − 1
− 1− e−4q/s

1− e4/s

)
=

1

(1− e−2q/s)2
·
(
2q · e−2q/s + (1− e−4q/s) · e

4/s + 1

e4/s − 1

)
=

1

(1− e−2q/s)2
·
(
2q · e−2q/s + (1− e−4q/s) · coth(2/s)

)
=

2q · e2q/s

(1− e2q/s)2
+

e4q/s − 1

(1− e2q/s)2
· coth(2/s)

=
2q · e2q/s

(e2q/s − 1)2
+ coth(q/s) · coth(2/s) .

5.4.2 Worst-Case Decoding

Now we address list-decoding in the ℓ1 norm, under worst-case error of bounded norm,

by specializing the material of Section 5.2.1 to p = 1 and using our bound on fs(Lq) from

Lemma 5.23. We consider decoding distance d = δn, where n is the code length and δ is the

relative decoding distance. Then by Equations (5.9) and (5.10) and Lemma 5.23, we can

80

list-decode for any R∗ less than

R∗,(1)wc,q (δ) = sup
s>0

B
(1)
q,δ (s)

2 > sup
s>0

exp(−4δ/s) · tanh(2/s) · E(q/s) . (5.21)

Corollary 5.25 below is obtained by maximizing the “main term” exp(−4δ/s) · tanh(2/s)
of the right-hand side of (5.21). By calculus, this is done by taking s = 4/ ln(D(δ)) > 0,

where

D(δ) :=

√
1 +

1

δ2
+

1

δ
> 1 .

Substituting, this means we can list-decode for any R∗ less than

R̃∗,(1)wc,q (δ) :=
tanh(ln

√
D(δ))

D(δ)δ
· E(q ln(D(δ))/4) =

D(δ)− 1

D(δ) + 1
· E(q ln(D(δ))/4)

D(δ)δ
. (5.22)

We consider this quantity’s asymptotic behavior for large and small δ:

• As δ grows, D(δ) = 1 + 1/δ + O(1/δ2) and D(δ)δ approaches e, hence R̃
∗,(1)
wc,q (δ) ap-

proaches 1/(2eδ) as q/δ also grows. This is consistent with Remark 5.12.

• As δ approaches zero, D(δ) approaches 2/δ and D(δ)δ approaches 1, hence R̃
∗,(1)
wc,q (δ)

approaches 1 as q/δ also grows.

Alternatively, we can get a simpler but cruder bound by replacing tanh(2/s) in Equa-

tion (5.21) with its upper bound of 2/s. Then the resulting “main term” of 2 exp(−4δ/s)/s
is maximized at s = 4δ; substituting, this means we can list decode for any R∗ less than

e−1 · tanh(1/(2δ)) · E(q/(4δ)) .

This bound approaches 1/(2eδ) as δ and q/δ grow, which matches the behavior of R̃
∗,(1)
wc,q (δ)

as described above. However, as δ approaches zero (and q/δ grows), the above bound merely

approaches 1/e, which is much worse than the limit of 1 for R̃
∗,(1)
wc,q (δ).

Corollary 5.25. For any δ > 0 and prime q, the GS algorithm using weight vector fs for

s = 4/ ln(D(δ)) list-decodes, up to ℓ1 distance δn in time poly(n, q, 1/(

√
R̃
∗,(1)
wc,q (δ) −

√
R∗)),

any GRS code with adjusted rate R∗ < R̃
∗,(1)
wc,q (δ) (see Equation (5.22)).

Proof. By hypothesis and Lemma 5.23 and Equation (5.9),

R∗ < R̃∗,(1)wc,q (δ) =
tanh(ln

√
D(δ))

D(δ)δ
· E(q/s) <

exp(−4δ/s)
fs(Lq)

= B
(1)
q,δ (s)

2 .

The claim then follows directly by Theorem 5.10.

81

Comparison to [RS94]. To our knowledge, the only prior result for decoding Reed–

Solomon codes in the ℓ1 norm is due to Roth and Siegel [RS94], who gave a unique decoding

algorithm for discrete error up to half the minimum distance using Euclid’s algorithm for

polynomials.7

Proposition 5.26 (adapted from [RS94, Section 5]). For any prime-field GRS code C ⊆ Fn
q

and any adjusted rate R∗ ∈ (0, 1), there is a poly(n, q) time algorithm that (uniquely) decodes

C under discrete error of relative ℓ1 distance δ < 1−R∗ − 1/n < 1.

By contrast, our Corollary 5.25 works for continuous error for any (arbitrarily large)

δ > 0, by taking sufficiently small R∗ > 0. For large n, the above distance bound approaches

1 − R∗. In this regime, our rate-distance trade-off from Corollary 5.25 surpasses that of

Proposition 5.26 for all relative distances δ ⪆ 0.78988, which corresponds to rates R∗ ⪅

0.21012.

5.4.3 Average-Case Decoding

We now consider average-case decoding under a memoryless additive (continuous or dis-

crete) Laplacian channel, by specializing the material of Section 5.2.2 to p = 1 and using

our bound on fs(Lq) from Lemma 5.23. Consider a Laplacian channel of parameter r > 0.

Then by Equations (5.11) and (5.12), we can list-decode for any R∗ less than

R∗,(1)ac,q (r) = sup
s>0

A(1)
q,r(s)

2 > sup
s>0

s2 · tanh(2/s)
(r + s)2

· E(q/s) , (5.23)

where the inequality is by Lemma 5.23.

Corollary 5.27 below is obtained by nearly maximizing the right-hand side of (5.23), at

least for moderate or large values of r. Specifically, we use the bound tanh(2/s) < 2/s

to approximate the “main term” of (5.23) by 2s/(r + s)2. This is maximized at s = r,

which makes the original main term equal to tanh(2/r)/4. Note that R
∗,(1)
ac,q (r) does indeed

approach this value as r and q/r grow, because tanh(2/r) approaches 2/r, and E(q/r) rapidly

approaches 1 (see Equation (5.20)).

However, for small values of r, the expression in (5.23) is maximized for s significantly

larger than r, to have value much larger than tanh(2/r)/4 < 1/4. This maximization can be

computed numerically, and indeed, R
∗,(1)
ac,q (r) approaches 1 as r approaches 0.

7The algorithm of [RS94] actually applies to a more general family of codes, called (shortened) BCH
codes, over any prime-power field. By restricting to prime fields and using a standard reduction, the result
from [RS94] also applies to all prime-field GRS codes. We also remark that the results in [RS94] are stated
for the Lee metric, which is equivalent to the ℓ1 norm in prime fields.

82

Corollary 5.27. For any r > 0, α ∈ (0, 1), and prime q, the GS algorithm using weight

vector given by fr list-decodes, in time poly(n, q, 1/(

√
R
∗,(1)
ac,q −

√
R∗)), any GRS code with

adjusted rate

R∗ < R̃∗,(1)ac,q (r) :=
tanh(2/r)

4
· E(q/r) ,

except with probability less than exp
(
−n · α2 · r ·

(√
R̃
∗,(1)
ac,q (r)−

√
R∗
)2)

.

Proof. By hypothesis, Lemmas 5.13 and 5.23 and Equation (5.11),

R∗ < R̃∗,(1)ac,q (r) =
tanh(2/r)

4
· E(q/r) <

µ2
r,r

fr(Lq)
= A(1)

q,r(r)
2 .

The claim then follows directly by Theorem 5.14, and (for the probability bound) the fact

that fr(Lq) > coth(2/r) > r/2 by Lemma 5.24.

5.5 Future Directions

In this work, we present an efficient algorithm for list-decoding GRS codes from either

worst-case errors or average-case errors in the ℓp (quasi)norm for 0 < p ≤ 2. Remarkably,

the product of the relative distance and the adjusted rate for which we can decode worst-

case errors approaches the relative radius of a unit-volume ℓp ball. This relationship arose

naturally from the Guruswami-Sudan framework and our analysis, but we do not know what

the deeper explanation is. Explaining this phenomenon in the geometric or coding theoretic

context is left open.

As described in Section 5.3, instantiating our general list-decoding algorithm with p = 2

gives an efficient list-decoding algorithms for GRS codes in the ℓ2 norm. Our algorithm

performs better than the previously known one in [MP22] in that it works for arbitrarily

large decoding distances and larger rates. For decoding distances less than 1/2, however,

the algorithm from [MP22] was shown to be an optimal instantiation of the GS algorithm.

It remains an open question to determine an optimal choice of weights for the GS algorithm

for decoding distances larger than 1/2.

In Section 5.4, we instantiated our general list-decoding algorithm with p = 1 to obtain

an efficient list-decoding algorithms for GRS codes in the ℓ1 norm. To our knowledge, only

a unique-decoding algorithm GRS codes in the ℓ1 norm was known [RS94], so ours is the

first list-decoding algorithm. Improving our algorithm is an open direction.

83

CHAPTER 6

Lattice List-Decoding Bounds

Based on joint work with Mahdi Cheraghchi and on joint work with Chris Peikert.

Given the structural similarity between codes and lattices as vector linear subspaces over

a field, a lattice can be viewed as an (infinite) code in Euclidean space. For wireless com-

munication, it is natural to represent transmitted messages by real-valued vectors. Lattices

provide a convenient structure for encoding and decoding in this context, which makes lattice

list-decoding a natural object of study. A lattice with larger “density”, and whose minimum

distance is at least one, contains more codewords within a finite bounded space, so such a

lattice has a higher “rate” when used for error-correction; this allows more information to

be sent for a fixed blocklength. Thus, a lattice ideal for use in error-correction would have

high density and be efficiently list-decodable.

Lattice Density and Minkowski’s Inequality. In order to quantify how good a lattice

is for error-correction, we need analogous notions for rate and minimum distance. While the

minimum distance of a lattice is well-defined as the length of the shortest non-zero vector

(see Definition 2.15), defining the rate of a lattice is not so straightforward. The rate of a

code measures the density of the codewords relative to the finite ambient space. Lattices,

on the other hand, are defined over infinite and dense Euclidean space, so the closest analog

of rate is given by its determinant (see Definition 2.13). Since the determinant of a lattice

is dependent on the minimum distance, a natural way to measure the density of a lattice is

to compare their ratio (see [CS88] for background).

In particular, we use the normalized minimum distance of a lattice L ⊂ Rn, which is

given by γ(L) := (λ1(L)/ det(L)1/n)2. A related quantity is the Hermite constant, which

quantifies the largest normalized minimum distance for a given dimension; this is defined as

γn := supL⊂Rn γ(L). The following result bounds this quantity for any lattice.

84

Theorem 6.1 (adapted from [CS88, Chapter 1, Equation 28]). For any lattice L ⊂ Rn,

λ1(L)
det(L)1/n

≤
√
n .

Equivalently, the Hermite constant for dimension n is bounded by γn ≤ n.

We refer to this inequality hereafter as Minkowski’s bound.

Prior Work. The study of efficient lattice list-decoding was initiated by Grigorescu and

Peikert in [GP17], who gave an efficient algorithm for list-decoding a family of lattices, called

Barnes-Wall lattices. Mook and Peikert in [MP22] later showed how to efficiently list-decode

Barnes-Sloane lattices, which achieve Minkowski’s bound within a factor of O(
√
log(n)) and

have better density than Barnes-Wall lattices. Soon after, Bennett and Peikert [BP22]

showed how to efficiently list-decode lattices obtained from Reed-Solomon codes, which

achieve Minkowski’s bound within the same O(
√
log(n)) factor. Most recently, Kirshanova

and Malygina in [KM23] constructed efficiently list-decodable lattices by applying Construc-

tion D to a tower of algebraic-geometry codes, known as the Garcia-Stichtenoth tower. These

lattices achieve Minkowski’s bound within a smaller factor of O(log(n)ε+o(1)) for some ε > 0.

All of these works list-decode lattices that can be obtained from codes using Construc-

tion D; in fact, the recursive nature of this construction forms the basis of these efficient

iterative algorithms. None of these lattices, however, achieve the maximum density given by

Minkowski’s bound.

Our Contributions. In this work, we probabilistically construct dense Construction D

lattices and prove capacity bounds for lattice list-decoding over general norms using a prob-

abilistic argument. In Section 6.1, we determine a sufficient condition for a Construction D

lattice to achieve Minkowski’s inequality up to a constant factor. In particular, it is sufficient

that each code with blocklength n and minimum distance d in the input tower of linear codes

have codimension Θ(d log(n/d)). Random linear codes satisfy this codimension bound with

high probability. Using this observation, we show that instantiating Construction D with

a tower of random linear codes produces a lattice that achieves Minkowski’s inequality. In

Section 6.2, we determine probabilistic capacity bounds for list-decoding lattices over the

Euclidean norm and other norms.

Throughout this work, all distance are measured in the Euclidean (ℓ2) norm unless spec-

ified otherwise. All lattices are assumed to be full-rank.

85

6.1 Dense Lattices from Random Linear Codes

Results in this section are based on joint work with Mahdi Cheraghchi.

First we describe some properties of lattices obtained via Construction D. If the construc-

tion is instantiated with binary linear codes, the minimum distance and determinant can be

expressed explicitly as follows.

Lemma 6.2 (adapted from [BS83, Theorem 1] and [CS88, Chapter 8, Theorem 13]). For

any positive integers n and ℓ, and tower of codes {Ci}ℓi=0 where Cℓ ⊆ . . . ⊆ C1 ⊆ C0 = Fn
2 and

each Ci is a [n, ki, di]2-code with distance di ≥ 4i, the Construction D lattice L = LD({Ci}ℓi=0)

has minimum distance λ1(L) = 2ℓ and determinant

det(L) = 2
∑ℓ

i=1(n−ki) .

We generalize this property to codes over prime fields. Recall that Construction D requires

the field characteristic to be prime. We remark that [MP22] mentions this generalization

but does not explicitly prove it, so we include a proof here for completion.

Lemma 6.3. For any positive integers n and ℓ, prime p, and tower of codes {Ci}ℓi=0 where

Cℓ ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p and each Ci is a [n, ki, di]p-code with distance di ≥ p2i, the

Construction D lattice L = LD({Ci}ℓi=0) has minimum distance λ1(L) = pℓ and determinant

det(L) = p
∑ℓ

i=1(n−ki) = pℓn−
∑ℓ

i=1 ki .

Proof. By Definition 2.18, the Construction D lattice L is generated by a basis B ∈ Zn×n

which is obtained by scaling the rows of the generator matrix G for the given tower of codes.

Recall that G has block matrices G0, . . . ,Gℓ such that the rows of Gi, . . . ,Gℓ generate code

Ci for every i ∈ [ℓ] and G0 is the identity matrix. Then for each i, the block matrix consisting

of Gi, . . . ,Gℓ has ki rows. The basis matrix B is obtained by scaling the block matrices of G

so that the corresponding block matrices of B are pℓG0, p
ℓ−1G1, . . . , p

0Gℓ. By construction,

B is also an upper-triangular matrix. Since the diagonal entries of G are all 1, the diagonal

entries of B are all multiples of p. By the fact that the determinant of an upper-triangular

matrix is the product of its diagonal entries,

det(L) = det(B) = pn−kℓ · pn−kℓ−1 · . . . · pn−k1 = p
∑ℓ

i=1(n−ki) .

Now we prove the minimum distance claim. First we show the upper bound. Since the

basis matrix B is upper-triangular, has non-zero determinant, and has integer entries, Zn lies

86

in the integer span of B. This implies that the scaled integer lattice pℓZn is a sublattice of

L; this has minimum distance pℓ. Since adding points to pℓZn cannot increase the minimum

distance, and L is a superset of pℓZn, we have λ(L) ≤ pℓ.

Now let v = (v1, . . . , vn) ∈ L be an arbitrary non-zero lattice vector. Then v = uB for

some non-zero coefficient vector u = (u1, . . . , un) ∈ Zn. Let j ∈ [n] be the smallest index

such that the corresponding coefficient uj is non-zero. This coefficient scales the j-th row

of B and is contained in the block matrix Gi for some i ∈ [ℓ]. Then, by definition, every

coordinate of u with index smaller than j must be zero, so the first j − 1 coordinates of v

are v1 = . . . = vj−1 = 0. By definition of B, every entry of the block matrices Bi, . . . ,Bℓ is a

multiple of pℓ−i, so the the non-zero coordinates of v are all multiples of pℓ−i. In particular,

we can express v in the form v = (0, . . . , 0, pℓ−i ·wj, . . . , p
ℓ ·wn) for some wj, . . . , wn ∈ Z, at

least one of which is non-zero. Consider the normalization of v by pℓ−i, given by v′ := pi−ℓv,

and define c′ := v′ mod p ∈ Fn
p . Suppose that the last row of Bi is the j

′-th row of B. Then

using this notation,

c′ ≡ pi−ℓ · (0, . . . , 0, pℓ−i · wj, . . . , p
ℓ−i · wj′ , p

ℓ−i+1 · wj′+1, . . . , p
ℓ · wn)

≡ (0, . . . , 0, wj, . . . , wj′ , p · wj′+1, . . . , p
i · wn)

≡ (0, . . . , 0, wj, . . . , wj′ , 0, . . . , 0) mod p .

By Definition 2.18, this c′ must be a non-zero codeword of Ci, which by hypothesis has min-

imum distance di. Then c′, and consequently v′, must have at least di non-zero coordinates.

Then the lattice vector v has length

∥v∥2 = ∥pℓ−iv′∥2 = p2(ℓ−i) · ∥v′∥2 ≥ p2(ℓ−i) · di .

By hypothesis, di ≥ p2i for all 0 ≤ i ≤ ℓ, and minimizing both sides of this inequality,

λ1(L)2 = min
v∈L\{0}

∥v∥2 ≥ min
i

p2(ℓ−i) · di ≥ p2ℓ .

This gives the lower bound λ1(L) ≥ pℓ. Together with the upper bound, we obtain λ1(L) = pℓ

as claimed.

6.1.1 A Sufficient Condition for Achieving Minkowski’s Bound

In this section, we determine a sufficient conditions for a Construction D lattice from

binary linear codes to achieve Minkowski’s inequality. We also show that random linear

binary codes satisfy this condition with high probability.

87

Remark 6.4. For Construction D lattices from a tower of binary codes in Fn
2 , a simple

calculation reveals that the density ratio on the left-hand side of the inequality in Theorem 6.1

is equal to the right-hand side
√
n if the sum of all the code dimensions is n log2(

√
n). This

follows immediately from Lemma 6.2. The following statements give an asymptotic condition

for each code in the tower; it is more clear how to satisfy this condition for individual codes

in the tower, rather than satisfy the dimension sum.

Theorem 6.5 (Theorem 6.6, informal). For any positive integers n and ℓ satisfying ℓ =

log(Θ(n)) < log4(n/2), and tower of binary codes {Ci}ℓi=0 where Cℓ ⊆ . . . ⊆ C1 ⊆ C0 = Fn
2

and each Ci is a [n, ki, di]2-code with minimum Hamming distance di = 4i and codimension

n− ki = Θ(di log(n/di)), the Construction D lattice L = LD({Ci}ℓi=0) satisfies

λ1(L)
det(L)1/n

= Θ(
√
n) .

This result is analogous to [MP22, Theorem 5.5].

Theorem 6.6. For any positive integer n, α ∈ (0, 1
2
), tower length ℓ = ⌊log4(αn)⌋, real

γ > 0, and κ ∈ (0, 1) satisfying

log2(κ) ≥ log2(α)
(4αγ

3
+

1

2

)
− 8αγ

9
+

4γ · log2(n)
3 · n

+
8γ

9 · n
,

the tower of binary codes {Ci}ℓi=0, where Cℓ ⊆ . . . ⊆ C1 ⊆ C0 = Fn
2 and each Ci is a [n, ki, di]2-

code with minimum Hamming distance di = 4i and codimension n− ki = γi · di log(n/di) for
some constant γi ≤ γ, produces a Construction D lattice L = LD({Ci}ℓi=0) that achieves

λ1(L)
det(L)1/n

≤ κ
√
n .

Note that this approximation factor κ exists for any blocklength n by taking sufficiently

small values of α, as long as the tower length ℓ is still a positive integer.

Proof. By Lemma 6.2 and hypothesis on ℓ, we have λ1(L) = 2ℓ =
√
αn and det(L) = 2

∑
i n−ki .

So to show that their ratio satisfies the claimed inequality, it is enough to lower bound the

sum of the code codimensions by n · log2(
√
α/κ). By hypothesis on the codimension and

distance and γi ≤ γ, and some logarithmic manipulations,

ℓ∑
i=1

n− ki =
ℓ∑

i=1

γi · 4i log2(n/4i) ≤ γ log2(n) ·
ℓ∑

i=1

4i − 2γ ·
ℓ∑

i=1

i · 4i .

88

Using identities for the finite geometric series and the second series above 1 and some loga-

rithmic manipulations

ℓ∑
i=1

n− ki ≤
4γ

3
(αn− 1) · log2(n)−

8γ

9
(αn(3 log4(αn)− 1) + 1)

= n
(8αγ

9
− 4αγ log2(α)

3

)
− 4γ · log2(n)

3
− 8γ

9
.

Dividing both sides by n and applying the hypothesis on log2(κ), we obtain

1

n
·

ℓ∑
i=1

n− ki ≥ log2(
√
α/κ) ,

which proves the claim.

Using Lemma 6.3 and a proof nearly identical to that of Theorem 6.6, we obtain a more

general result for codes over larger prime fields.

Theorem 6.7. For any positive integer n, α ∈ (0, 1
2
), tower length ℓ = ⌊logp(

√
αn)⌋, real

γ > 0, and κ ∈ (0, 1) satisfying

log2(κ) ≥ logp(α)
(p2αγ

p2 − 1
+

1

2

)
− 2p2αγ

(p2 − 1)2
+

p2γ · logp(n)
(p2 − 1) · n

+
2p2γ

(p2 − 1)2 · n
,

the tower of codes {Ci}ℓi=0, where Cℓ ⊆ . . . ⊆ C1 ⊆ C0 = Fn
p and each Ci is a [n, ki, di]p-code

with minimum Hamming distance di = p2i and codimension n − ki = γi · di log(n/di) for

some constant γi ≤ γ, produces a Construction D lattice L = LD({Ci}ℓi=0) that achieves

λ1(L)
det(L)1/n

≤ κ
√
n .

6.1.2 Constructing Codes that Satisfy the Condition

In this section, we give a Varshamov-like probabilistic construction for generating a tower

of linear codes that satisfy the conditions in Theorem 6.7. For any blocklength n and prime

field size p, we construct a tower of random linear codes Fn
p = C0 ⊇ C1 ⊇ · · · ⊇ Cℓ by

sampling row vectors from Fn
p uniformly at random and iteratively concatenating them to

form parity-check matrices. The following construction describes the formal procedure.

Let n be a positive integer, p a prime, and ℓ a positive integer such that ℓ < n/ logp(n).

1In particular, we use the well-known identity
∑ℓ

i=1 a
i = (aℓ+1−a)/(a− 1) and the identity

∑ℓ
i=1 i ·ai =

a(aℓ(ℓ(a− 1)− 1) + 1)/(a− 1)2. Both can be shown using a straightforward induction proof.

89

Construction 6.8. Set r0 := 1. Choose rank parameters r1, . . . , rℓ ← [n] uniformly at

random such that r1 ≤ r2 ≤ . . . ≤ rℓ. Define H0 := 0 ∈ F1×n
p . For all 1 ≤ i ≤ ℓ, construct

the matrix Hi ∈ Fri×n
p as follows: Set si := r1 + . . .+ ri−1.If ri > si, sample ri − si new row

vectors h1, . . . ,hri−si independently ad uniformly at random from Fn
p . Concatenate these

row vectors to the bottom of Hi−1 to form the matrix Hi. These matrices have the form

H1 =


−h(1)

1 −
...

−h(1)
r1 −

 , H2 =


H1

−h(2)
1 −
...

−h(2)
r2−r1−

 , . . . , Hℓ =



H1

...

Hℓ−1

−h(ℓ)
1 −
...

−h(ℓ)
rℓ−sℓ−


.

Figure 6.1: The parity-check matrices generated by Construction 6.8.

For every 0 ≤ i ≤ ℓ, define Ci := ker(Hi) ⊆ Fn
p to be the code whose parity-check matrix

is Hi. Output the tower of codes {Ci}ℓi=0.

This probabilistic algorithm runs in time polynomial in n.

By construction, the subspaces corresponding to the iteratively-constructed matrices

H0, . . . ,Hℓ are nested, so that ker(Hi) ⊆ ker(Hi−1) for all 1 ≤ i ≤ ℓ. Hence, Cℓ ⊆ . . . ⊆ C1 ⊆
C0 = Fn

p produced by Construction 6.8 is a nested tower of linear p-ary codes, where each Ci is
a [n, ki, di]p-code with codimension ri = n−ki. Since the rows of these matrices are sampled

independently and uniformly at random, and additional random rows are concatenated in

each iteration, every matrix Hi is a uniformly random matrix over its domain Fri×n
p .

We require the tower length to be at most ℓ < n/ logp(n) to ensure that the generated

codes do not trivialize before all ℓ codes are constructed. More precisely, if the iterative

construction of the matrices Hi is repeated for more than n/ logp(n) iterations, the matrix

Hi will contain n linearly independent rows and form the trivial code Ci = {0}.
For our application in Theorem 6.7, we want each code Ci to have distance di = p2i and

codimension ri ≤ γ · di logp(n/di) for some fixed constant γ > 0. We will show that the

tower of codes produced by Construction 6.8 achieves the lattice density in Theorem 6.7

for an appropriate κ ∈ (0, 1) with high probability. To do this, we will use the following

rate-distance trade-off bound for codes generated by a uniformly random generator matrix.

90

Lemma 6.9 (Gilbert-Varshamov Bound, adapted from [GRS19]). For any positive integer n,

prime p, δ ∈ (0, 1−1/p), and ε ∈ (0, 1−Hp(δ)) defining k := n(1−Hp(δ)−ε), the code C ⊆ Fn
p

generated by a uniformly random matrix G ∈ Fk×n
p has rate at least k/n ≥ 1 − Hp(δ) − ε

and relative minimum distance δ = d/n with probability at least 1− p−εn.

Recall that Hp(·) here is the p-ary entropy function defined in Definition 2.2. This result

can be reformulated in terms of parity-check matrices to obtain a bound on the codimension

of the code as follows.

Corollary 6.10. For any positive integer n, prime p, δ ∈ (0, 1−1/p), and ε ∈ (0, 1−Hp(δ))

defining k := n(1 − Hp(δ) − ε), the code C ⊆ Fn
p whose parity-check matrix is a uniformly

random matrix H ∈ F(n−k)×n
p has codimension at most n− k ≤ n(Hp(δ)− ε) and minimum

distance d = δn with probability at least 1− p−εn.

Now we apply this result to the codes generated by Construction 6.8.

Theorem 6.11. For any positive integer n, prime p, α ∈ (0, 1
2
), and positive integer ℓ

satisfying ℓ = ⌊logp(
√
αn)⌋ < n/ logp(n), let Cℓ ⊆ . . . ⊆ C1 ⊆ C0 = Fn

p be the tower of codes

generated by Construction 6.8, where each Ci is a [n, ki, di]p-code. Then for any γ > 0 defining

ε̃ := mini∈[ℓ] Hp(di/n) + γ · (di/n) · logp(di/n) and ε1, . . . , εℓ such that εi ∈ (ε̃, 1−Hp(di/n)),

every code Ci in the tower satisfies the codimension bound n − ki ≤ γ · di logp(n/di) with

probability at least 1− ℓ/pε̃n.

Note that the input di/n to the entropy function is in the required domain (0, 1), so ε̃ is

well-defined. For large values of p, the function Hp is strictly increasing until shortly before

1; this factor dominates the value of ε̃ for large values of n and p. The probability in the

statement above approaches 1 as n grows, because the height of the tower ℓ is logarithmic

in (a fixed fraction of) n, while ε̃n grows with n, so the denominator in the probability

expression grows more rapidly than the numerator.

Proof. It is enough to show that at least one code in the tower does not satisfy its codimension

bound with probability at most ℓ/pε̃n. By the union bound, the probability that some Ci
does not satisfy its codimension bound is bounded above by

Pr
[
∃i ∈ [ℓ] : n− ki > γ · di logp(n/di)

]
≤

ℓ∑
i=0

Pr
[
n− ki > γ · di logp(n/di)

]
.

Fix an arbitrary i ∈ [ℓ]. By Corollary 6.10 with εi and the definition of ε̃, the codimension

of code Ci satisfies

n− ki ≤ n(Hp(di/n)− εi) ≤ n(Hp(di/n)− ε̃) ≤ γ · di logp(n/di)

91

with probability at least 1 − p−εin ≥ 1 − p−ε̃n. Taking the complement and summing over

all codes in the tower, we obtain

Pr
[
∃i ∈ [ℓ] : n− ki > γ · di logp(n/di)

]
≤ ℓ · p−ε̃n .

As a consequence of Theorems 6.7 and 6.11, we obtain that dense Construction D lattices

exist and can be constructed from a tower of p-ary linear codes using Construction 6.8.

6.2 Lattice List-decoding Capacity

Results in this section are based on joint work with Chris Peikert.

The list-decoding capacity of a family of codes gives the optimal trade-off between the

rate of a code and the relative distance up to which it can be list-decoded. This trade-off

is known for the Hamming metric (see [GRS19, Theorem 7.4.1] for example). We derive a

similar optimal rate-distance trade-off for the Lee metric for sufficiently small list-decoding

radii. We also present a lattice list-decoding capacity bounds for decoding over general

norms.

6.2.1 List-decoding Capacity for Lee Metric

The Lee metric can be seen as a generalization of the Hamming metric, which instead of

indicating whether two symbols are the same, it quantifies how many symbols apart they

are. Formally, for any positive integer p, a real element x ∈ [0, p) has Lee weight

x :=

x, if 0 ≤ x < p
2

x− p, if p
2
≤ x < p .

The Lee distance between any two elements x, y ∈ Rp is given by x− y. This extends

naturally to vectors over Rp: For any x = (x1, . . . , xn) ∈ Rn
p , its Lee weight is defined as

the sum of the Lee weights of its coordinates, i.e., x :=
∑n

i=1 xi. Similarly, the Lee distance

between any two vectors x,y ∈ Rn
p of the same length is given by x− y.

Theorem 6.12 (List-decoding Capacity for Lee Metric). Let n and L be positive integers,

p a prime, and r ∈ (0, p/2). If a code C ⊆ Fn
p is (r, L)-list-decodable over the Lee metric and

has rate at least 1− logp(V
(n)
r)/n, then the list size L must be exponential in n.

92

For radius r < p/2, the volume of the n-dimensional r-radius Lee ball is known to be

V (n)
r :=

n∑
i=0

2i
(
n

i

)(
r

i

)
.

Proof. We use the probabilistic method to show that if C has large enough rate, there exists a

vector y ∈ Fn
p such that the number of codewords within Lee distance r of y is exponentially

large. Let B(0, r) denote the Lee ball of radius r centered at the origin. Define the indicator

function g(x) = 1[x ∈ B(0, r)] ∈ {0, 1}, which is 1 if and only if x lies in B(0, r), and also

define the function f : Fn
p → Z by f(z) :=

∑
c∈C g(z−c). This function f counts the number

of codewords within Lee distance of r from y, i.e.

f(y) = |{c ∈ C : ∥y − c∥L ≤ r}| .

Let y ∈ Fn
p be a uniformly random vector. We compute the expected number of close

codewords to y. By definition of f and linearity of expectation, we have

E
y
[f(y)] =

∑
c∈C

Pr
y
[y − c ∈ B(0, r)]

=
∑
c∈C

Pr
y
[y ∈ B(c, r)]

=
|C| · vol(B(0, r))

pn

=
pk · V (n)

r

pn

=

(
V

(n)
r

1/n

p1−R

)n

.

By assumption on the rate R, we have V
(n)
r

1/n
> p1−R, and so this expected value is expo-

nential in n. Therefore, there must exist a vector y such that the list size |C ∩ B(y, r)| is
exponentially large.

6.2.2 Lattice List-decoding Capacity

We generalize the approach used in Theorem 6.12 to lattices for large list-decoding radii.

Let Bn
r denote the n-dimensional ball of radius r centered at the origin.

Theorem 6.13 (Lattice List-decoding Capacity for General Norms). For any positive inte-

gers n and L and real r > 0, if a lattice L ⊂ Rn is (r, L)-list-decodable and has determinant

93

at most det(L) < vol(Bn
r), then the list size L must be exponential in n.

Proof. We use the probabilistic method to show that there exists a vector y ∈ Rn such that

the number of lattice points within the r-radius ball centered at y is exponentially large.

Let B(0, r) be the ball of radius r centered at the origin. Define the indicator function

g(x) = 1[x ∈ B(0, r)] ∈ {0, 1}, which is 1 if and only if x lies in B(0, r), and also define the

function f : Fn
p → Z by f(z) :=

∑
x∈L g(z − x). This function f is periodic and counts the

number of lattice points at distance of at most r from y, i.e.

f(y) = |{v ∈ L : ∥y − v∥ ≤ r}| .

Let y ∈ Rn be a vector drawn uniformly at random from the fundamental parallelipiped

P = P(L) of the lattice. Since P tiles Rn by lattice translates v + P where v ∈ L, the
number of lattice vectors close to y is independent of which lattice translate it lies in. So

without loss of generality we can choose a vector in P .
Now we compute the expected number of close lattice points to y. By definition of f ,

linearity of expectation, the fact that P partitions Rn by lattice translates, and that the

volume of B(0, r) is equal to the sum of the volumes of the portion of the ball that lies in

each lattice translate of P ,

E
y
[f(y)] =

∑
v∈L

Pr
y
[y − v ∈ B(0, r)]

=
∑
v∈L

Pr
y
[y ∈ B(v, r)]

=
∑
v∈L

Pr
y
[y ∈ B(v, r) ∩ P]

=
∑
v∈L

Pr
y
[y ∈ B(0, r) ∩ (P − v)]

=
∑
v∈L

vol(B(0, r) ∩ (P − v))

vol(P)

=
vol(Bn

r)

det(L)

=

(
vol(Bn

r)
1/n

det(L)1/n

)n

.

By hypothesis, vol(Bn
r)

1/n > det(L)1/n, so this expected value is exponential in n. Hence

there must exist a y such that the list size L = |L ∩ B(y, r)| is exponential.

We are particularly interested in the list-decoding capacity for the ℓ1 and ℓ2 norms.

94

Instantiating Theorem 6.13 with these norms gives the following two bounds.

Corollary 6.14 (Lattice List-decoding Capacity for ℓ2 norm). For any positive integers

n and L, real r > 0, and lattice L ⊂ Rn, if L is (r, L)-list-decodable for radius at least

r > Θ(
√
n) · det(L)1/n, then the list size L must be exponential in n.

This can be shown using a nearly identical proof to that of Theorem 6.13 and using the

fact that the r-radius ball Bn
r in the ℓ2 norm has volume

vol(Bn
r) =

πn/2

Γ(n
2
+ 1)

· rn = Θ
(rn

nn/2

)
.

Corollary 6.15 (Lattice List-decoding Capacity for ℓ1 norm). For any positive integers

n and L, real r > 0, and lattice L ⊂ Rn, if L is (r, L)-list-decodable for radius at least

r > 2/(n! det(L))1/n, then the list size L must be exponential in n.

This can be shown using a nearly identical proof to that of Theorem 6.13 and using the

fact that the r-radius ball Bn
r in the ℓ1 norm has volume

vol(Bn
r) =

2n

n!
· rn =

(2r)n

Θ(n)
.

In the particular case of Construction A lattices, where L = C̃+ pZn for some linear code

C ⊆ Fn
p over a prime field, if the code has rate R = k/n, the determinant of the lattice L has

the form det(L) = pn−k by Lemma 6.3. Then by Theorem 6.13, in the ℓ2 norm the list size

becomes exponential if

vol(Bn
r)

1/n = Θ
(r√

n

)
> det(L)1/n = p1−R .

So if the rate is greater than R > 1− logp(Θ(r/
√
n)), the list size L is exponential in n.

6.3 Future Directions

The probabilistic construction of dense lattices from Section 6.1 succeeds with high prob-

ability and requires a fairly strict condition on the minimum distances and codimensions

for the underlying codes. Our result only implies the existence of codes that satisfy the

conditions sufficient to construct a dense Construction D lattice. It is still unknown how to

explicitly construct and efficiently list-decode lattices that achieve Minkowski’s inequality

within a constant factor. It is also unknown how to efficiently list-decode Construction D

95

lattices obtained from an arbitrary tower of linear codes. All previous lattice list-decoding

algorithms, namely those in [MP22, GP17, KM23], rely on efficient decoders for the un-

derlying family of codes in addition to the recursive structure of Construction D. Thus,

constructing an explicit and efficiently list-decodable lattice that achieves Minkowski’s bound

– even without using Construction D – remains an open problem.

We presented some probabilistic lattice list-decoding capacity bounds in Section 6.2.

These only give an idea of the asymptotic relationship between the radius, determinant,

and list size. A more fundamental problem is that of determining the maximum density

of a list-decodable lattice for any given dimension, radius, and list size. This is a purely

geometric problem: The error-correcting capability of a lattice can be represented by spheres

centered at each lattice point with radius equal to the decoding distance. For this lattice

to be efficiently list-decodable, any point in the space should lie in the decoding radius

of at most a polynomial number L (in the dimension) of lattice points. All together, this

means that any given point must lie in at most L overlapping decoding-radius spheres. In

this way, determining the fundamental limits of lattice list-decoding is precisely this multi-

sphere packing problem of determining the densest lattice packing for a given radius that

allows a limited number of sphere overlaps. Some limited progress has been made on this

problem in [IHKU14, Yan80, Pur73, ZV22, Tót83].

96

APPENDIX A

Proof of Levin’s Result

The original statement of Levin’s generalization of the Goldreich-Levin theorem in [Lev12]

relates the security of a one-way function to that of a hard-core predicate. The security of a

computational problem is essentially the minimum of the inverse success probability of any

probabilistic polynomial-time algorithm that tries to solve it. The notion of security can

be naturally extended to the primitive that corresponds to the computational problem. For

example, we say a one-way function f has security σ ≥ 1 if any polynomial-time algorithm

that tries to invert a given element in the image of f will succeed with probability at most

1/σ. This problem of inverting a one-way function is a search problem. On the other hand,

the problem of guessing a hard-core predicate can be seen as a decision problem (since a hard-

core predicate is binary). As discussed in the introduction, the notion of OPP algorithms

needs to be adapted to work for both search and decision problems when studying reductions

from one to another.

Micciancio and Walter [MW18] studied the (bit) security of a computational problem and

defined this to be compatible with both search and decision problems. If the algorithm is

allowed to output a special symbol ⊥ as an alternative to outputting a correct or wrong

answer, then it enables the algorithm to express uncertainty rather than randomly guess an

answer that will most likely be wrong. This can often be more informative than giving a

(possibly wrong) binary answer.

Consider an algorithm A for a computational problem that, given any instance, outputs

⊥ with probability 1 − α, answers correctly with probability αβ, and answers incorrectly

with probability α(1 − β). More precisely, define the output probability of A to be α :=

Pr[A ̸= ⊥] and the conditional success probability to be β := Pr[R(X,A) | A ̸= ⊥], where
the probabilities are over the randomness of the entire problem and the internal randomness

ofA. (Recall that for our reduction in Chapter 3, we considered α≫ β.) Using this notation,

the success probability of A is given by αβ. For decision problems, we define the conditional

distinguishing advantage of A to be δ := 2βA− 1. Micciancio and Walter define (and prove)

the advantage of any A to be αβ for a search problem and α(2β−1)2 for a decision problem.

97

Here we state the original result in [Lev12] and give a formal proof of Levin’s result using

the precise definitions above.

Lemma A.1 (adapted from [Lev12]). Let f : {0, 1}n → {0, 1}n be a one-way function

family that is length-preserving, i.e. |f(x)| = |x| for any input x ∈ {0, 1}n, and has security

s. Then b : {0, 1}n × {0, 1}n → {−1, 1}, b(x, r) := (−1)⟨x,r⟩ mod 2 is a hard-core predicate for

f with security s.

Proof. Suppose that G is a polynomial-time algorithm that, given w fair random coins,

f(x) for some x ∈ {0, 1}n, and a vector r ∈ {0, 1}n as input, guesses b(x, r) with success

probability

sG,f,b =
Er,x,w[G(f(x), r, w) · b(x, r)]2

Ex,r,w[G(f(x), r, w)2]
> 1/s .

Since finding the hard-core bit is a decision problem, this success probability is the advantage

of G for large n. We will show this explicitly.

Let the output of G be in {−1, 0, 1}, where outputting ”0” indicates that G does not know

and admits failure (this is used instead of ⊥). We use this G to construct an algorithm A
that, given f(x) for some x and w random coins, inverts f(x) with success probability

sA,f = Pr
x,w

[A(f(x), w) = x′ ∈ f−1(f(x))] > 1/s

and the expected runtime is polynomial.

Fix the input y = f(x) for some x ∈ {0, 1}n and randomness w. For this input, we use

the shorthand notation G(r) := G(y, r, w). Define

c(x) :=
Er[G(r) · b(x, r)]√

Er[G(r)2]
.

We claim that this c is the Walsh-Hadamard transform of G up to a constant factor. By

definition,

c(x) =

∑
r∈{0,1}n G(r) · (−1)⟨x,r⟩ · Prr[G(r) · b(x, r)]√

Er[G(r)2]
=

1√
Er[G(r)2]

Ĝ(r).

Since r is fixed in the sum, the probability is eliminated, so we obtain a constant (dependent

on r) multiple of Ĝ, the Walsh-Hadamard transform of G.

98

By definition, we can use the security notation in the preamble to rewrite the following.

E
r
[G(r)2] =

∑
r∈{0,1}n

G(r)2 · Pr[G(r)2]

= Pr
r
[G(r) = 1] + (−1)2 Pr

r
[G(r) = −1] + 0

= Pr
r
[G(r) ̸= 0] = αG.

E
r
[G(r) · b(x, r)] = 0 + Pr

r
[G(r) · b(x, r) = 1] + (−1) Pr

r
[G(r) · b(x, r) = −1]

= Pr
r
[G(r) = b(x, r)]− Pr

r
[G(r) = −b(x, r)].

Dividing these and noticing that G guesses the bit (correctly or not) only if it does not output

0, we obtain

Er[G(r) · b(x, r)]
Er[G(r)2]

=
Prr[G(r) = b(x, r)

Prr[G(r) ̸= 0]
− Prr[G(r) = −b(x, r)

Prr[G(r) ̸= 0]

= Pr
r
[G(r) = b(x, r) | G(r) ̸= 0]− Pr

r
[G(r) = −b(x, r) | G(r) ̸= 0].

But by definition of conditional distinguishing advantage, this is exactly βG − (1 − βG) =

2βG−1 = δG. Using this notation and the claim above, we can express c(x) as
√
αG ·δG. This

then implies that the success probability of G is the same as its advantage for these fixed

inputs.

Now we define our inverter. Consider the following algorithm A:

99

Algorithm 7: OWF to HCP Reduction

Input: y = f(x) for some x ∈ {0, 1}n, w random coins.

Output: x′ ∈ f−1(y) or ⊥.

Flip ℓ = ℓ(w) coins until a 0 is obtained. If ℓ > 2n, abort and output ⊥.
Set k := ℓ+ ⌈log2(4n)⌉.
Sample a random matrix R← {0, 1}n×k.
for z ∈ {0, 1}k do

for 1 ≤ i ≤ n do
Define gi(u) := G(Ru+ ei).

Run FFT on gi to compute hi(z) :=
∑

u∈{0,1}k\{0}(−1)⟨z,u⟩gi(u).
Set x′i := sign(hi(z)).

end

Define x′ := (x′1, . . . , x
′
n).

if f(x′) = y then
Output x′.

end

end

Output ⊥.
Here FFT denotes the Fast Fourier Transform. We explain the reasoning behind this

algorithm, then analyze its performance.

Consider the case where c(x) > 0. (Otherwise, δG ·
√
αG ≤ 0, which implies δ ≤ 0. This

means that G has no distinguishing advantage. We are only interested in the case where G
has some advantage, so we ignore this case.) The algorithm flips ℓ coins until it obtains a

0. The probability that ℓ = ℓ′ for some fixed positive integer ℓ′ is 2−ℓ
′
. Then ℓ > ℓ′ with

probability

Pr
ℓ
[ℓ > ℓ′] =

(
1− Pr

ℓ
[ℓ ≤ ℓ′]

)
=

(
1−

ℓ′∑
i=1

1

2ℓ′

)
=

(
1−

(
1− 1

2ℓ′

))
=

1

2ℓ′
.

The parameter k is set to be k := ℓ+ ⌈log2(4n)⌉. This is large enough if

k > log2

(
2n

c(x)2

)
⇐⇒ ℓ >

⌈
log2

(
2n

4n · c(x)2

)⌉
≥ log2

(
1

2c(x)2

)
Hence, k is large enough with probability 2c(x)2.

Let m := 2k/αG. We claim the following: If r1, . . . , rm ∈ {0, 1}n are pairwise independent

100

random vectors, then

Pr
r1,...,rm

[
m∑
j=1

(−1)⟨x,rj⟩G(rj) > 0

]
> 1− 1

2n
.

Let Zj := (−1)⟨x,rj⟩G(rj) be the corresponding random variables and let Z :=
∑m

j=1 Zj

denote their sum. Since r1, . . . , rm are pairwise independent, Z1, . . . , Zm are also pairwise

independent random variables. Since these are identically distributed, their expectation is

the same c := E[Zj] = δGαG for all j. This allows us to rewrite the expectation and variance

of Z as

E[Z] =
m∑
j=1

E[Zj] = m · c = m · √αGc(x).

Var[Z] =
m∑
j=1

Var[Zj] ≤ m.

Note that the expectation of the random variable Z depends on the success rate of G. The
bound on the variance follows from the fact that Zj is distributed over {−1, 0, 1}. Observe

that

Pr
r1,...,rm

[Z ≤ 0] = Pr
r1,...,rm

[Z −mc ≤ −mc] ≤ Pr
r1,...,rm

[|Z −mc| ≥ mc].

By the Chebyshev inequality, we obtain

Pr
r1,...,rm

[|Z −mc| ≥ mc] ≤ Var[Z]

(mc)2
≤ 1

mc2
.

For our choice of m > 2n/(αGc(x)
2), the bound above is less than 1/(2n). Therefore we

obtain the desired claim.

Note that for pairwise independent r1, . . . , rm ∈ {0, 1}n, the vectors r1 + ei,

. . . , rm + ei are also pairwise independent for any 1 ≤ i ≤ n. For any random matrix

R ∈ {0, 1}n×k, the vectors Ru for non-zero u ∈ {0, 1}k are pairwise independent vectors.

Thus the claim holds for the vectors Ru+ ei, i.e.

Pr
R

 ∑
u∈{0,1}k\{0}

(−1)⟨x,Ru+ei⟩G(Ru+ ei) > 0

 > 1− 1

2n
.

Observe that (−1)⟨x,Ru+ei⟩ · G(Ru+ ei) = (−1)xi(−1)⟨x,Ru⟩ · G(Ru+ ei), where xi is the ith

101

bit of x. The sum above is larger than zero if and only if

(−1)xi = sign

 ∑
u∈{0,1}k\{0}

(−1)⟨x,Ru⟩G(Ru+ ei)

 .

By the claim, this happens for at least a 1−1/(2n) fraction of random matrices R. Note that

if z := xTR were known, then the bit xi can easily be computed using the expression above,

conditioned on the success of G in guessing for the input Ru + ei. A iterates through all

possible z ∈ {0, 1}k, so we get z = xTR for some guess. Note that the algorithm can do this

efficiently because 2k is only logarithmic in n. Then for this desired z and for any coordinate

i, FFT can be used to compute hi(z), the Walsh-Hadamard transform of G(Ru+ ei). This

requires O(2k log2(2
k)) = O(k2k) operations. Iterating over all n coordinates of x and by

trying all possible z, the total runtime of A becomes

n · 2k ·O(k2k) = O

(
n · log2

(
2n

c(x)2

)
· 4n2

c(x)4

)
= O

(
n3

c(x)4
· log2

(
n

c(x)2

))
.

Thus, for large enough c(x)2, A runs in time polynomial in n. Note that the expected runtime

of A is polynomial, but A does not necessarily terminate in polynomial time.

The success of A depends on k being sufficiently large and the sign of hi(z) being (−1)xi

for the randomly sampled R. Taking all this into account, the probability that A succeeds

is given by

sA,f = Pr
x,w

[A(f(x), w) = x′ ∈ f−1(f(x))]

= Pr
x,w

[
k > log2

(
2n

c(x)2

)]
· Pr

R

[
∀i, (−1)xi = sign

(
(−1)⟨x,Ru⟩G(Ru+ ei)

)]
≥ 2c(x)2

(
n∑

i=1

Pr
R

[
(−1)xi = sign

(
(−1)⟨x,Ru⟩G(Ru+ ei)

)]
− (n− 1)

)

> 2c(x)2
(
n

(
1− 1

2n

)
− n+ 1

)
= c(x)2.

This is exactly the success probability of G when given input y, w. Therefore, A and G have

the same success probability bound of 1/s via this expected polynomial-time reduction.

102

BIBLIOGRAPHY

[ABC+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Nieder-
hagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter
Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson,
and Wen Wang. Classic McEliece. NIST PostQuantum Cryptography Stan-
dardization Project submission, 2022.

[ABGSD21] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-
Davidowitz. Fine-grained Hardness of CVP(P) – Everything that we can prove
(and nothing else), 2021.

[ADRS14] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.
Solving the Shortest Vector Problem in 2n Time via Discrete Gaussian Sam-
pling. CoRR, abs/1412.7994, 2014.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.
Solving the Shortest Vector Problem in 2n Time via Discrete Gaussian Sam-
pling, 2015.

[Ajt96] Miklós Ajtai. Generating Hard Instances of Lattice Problems. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages
99–108, 1996.

[Ajt98] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized
reductions. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 10–19, 1998.

[ALNSD20] Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-
Davidowitz. Slide Reduction, Revisited—Filling the Gaps in SVP Approxi-
mation. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, pages 274–295, Cham, 2020. Springer Interna-
tional Publishing.

[ALS20] Divesh Aggarwal, Zeyong Li, and Noah Stephens-Davidowitz. A 2n/2-
Time Algorithm for

√
n-SVP and

√
n-Hermite SVP, and an Improved Time-

Approximation Tradeoff for (H)SVP. arXiv e-prints, Jul 2020.

103

[ALV25] Divesh Aggarwal, Jin Ming Leong, and Alexandra Veliche. Worst-Case to
Average-Case Hardness of LWE: An Alternative Perspective. In Elette Boyle
and Mohammad Mahmoody, editors, Theory of Cryptography Conference, pages
308–336, Cham, 2025. Springer Nature Switzerland.

[AM11] Divesh Aggarwal and Ueli Maurer. The Leakage-Resilience Limit of a Com-
putational Problem is Equal to Its Unpredictability Entropy. In Advances in
Cryptology–ASIACRYPT 2011: 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings 17, pages 686–701. Springer, 2011.

[ASD18] Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH Hardness of
SVP. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, pages 228–238, New York, NY, USA, 2018. Association
for Computing Machinery.

[Bab86] László Babai. On Lovász Lattice Reduction and the Nearest Lattice Point
Problem. Combinatorica, 6:1–13, 1986.

[Bab16] László Babai. Graph Isomorphism in Quasipolynomial Time. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 684–697. ACM, 2016.

[Ban95] Wojciech Banaszczyk. Inequalites for Convex Bodies and Polar Reciprocal Lat-
tices in Rn. Discrete & Computational Geometry, 13:217–231, 1995.

[BBB+25] Huck Bennett, Drisana Bhatia, Jean-François Biasse, Medha Durisheti, Lucas
LaBuff, Vincenzo Pallozzi Lavorante, and Philip Waitkevich. Asymptotic Im-
provements to Provable Algorithms for the Code Equivalence Problem. Cryp-
tology ePrint Archive, Paper 2025/187, 2025.

[BBPS21] Alessandro Barenghi, Jean-Francois Biasse, Edoardo Persichetti, and Paolo San-
tini. LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem.
Cryptology ePrint Archive, Paper 2021/396, 2021.

[BBPS22] Alessandro Barenghi, Jean-Francois Biasse, Edoardo Persichetti, and Paolo San-
tini. On the Computational Hardness of the Code Equivalence Problem in
Cryptography. Cryptology ePrint Archive, Paper 2022/967, 2022.

[BCGQ11] László Babai, Paolo Codenotti, Joshua Grochow, and Youming Qiao. Code
Equivalence and Group Isomorphism. pages 1395–1408, 01 2011.

[BGS17] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the
Quantitative Hardness of CVP. CoRR, abs/1704.03928, 2017.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-Tolerant Learning, the
Parity Problem, and the Statistical Query Model. CoRR, cs.LG/0010022, 2000.

104

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical Hardness of Learning with Errors. In Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages
575–584, New York, NY, USA, 2013. Association for Computing Machinery.

[BM23] Jean-François Biasse and Giacomo Micheli. A Search-to-Decision Reduction
for the Permutation Code Equivalence Problem. In 2023 IEEE International
Symposium on Information Theory (ISIT), pages 602–607, 2023.

[BOS19] Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha. Permutation Code
Equivalence is Not Harder than Graph Isomorphism When Hulls Are Trivial.
In IEEE International Symposium on Information Theory, ISIT 2019, Paris,
France, July 7-12, 2019, pages 2464–2468. IEEE, 2019.

[BP22] Huck Bennett and Chris Peikert. Hardness of the (Approximate) Shortest
Vector Problem: A Simple Proof via Reed-Solomon Codes. In International
Workshop and International Workshop on Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, 2022.

[Bri83] Ernest F. Brickell. Solving Low Density Knapsacks. In Advances in Cryptology:
Proceedings of CRYPTO ’83, pages 25–37. Plenum, 1983.

[BS83] E. Barnes and N. Sloane. New Lattice Packings of Spheres. Canadian Journal
of Mathematics, 35, February 1983.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-Based FHE as Secure as
PKE. In Proceedings of the 5th Conference on Innovations in Theoretical Com-
puter Science, ITCS ’14, pages 1–12, New York, NY, USA, 2014. Association
for Computing Machinery.

[BW24] Huck Bennett and Kaung Myat Htay Win. Relating Code Equivalence to Other
Isomorphism Problems. Cryptology ePrint Archive, Paper 2024/782, 2024.

[Cai98] Jin-Yi Cai. A Relation of Primal-Dual Lattices and the Complexity of Shortest
Lattice Vector Problem. Theoretical Computer Science, 207(1):105–116, 1998.

[CS88] John Conway and Neil Sloane. Sphere Packings, Lattices and Groups, pages
232–233. Springer New York, NY, January 1988.

[CSV25] Mahdi Cheraghchi, Nikhil Shagrithaya, and Alexandra Veliche. Reductions
Between Code Equivalence Problems. To appear at IEEE International Sym-
posium on Information Theory, 2025.

[DG23] Léo Ducas and Shane Gibbons. Hull Attacks on the Lattice Isomorphism Prob-
lem. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, Public-Key
Cryptography - PKC 2023 - 26th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023,
Proceedings, Part I, volume 13940 of Lecture Notes in Computer Science, pages
177–204. Springer, 2023.

105

[Din02] Irit Dinur. Approximating SVP∞ to Within Almost-Polynomial Factors is NP-
Hard. Theor. Comput. Sci., 285(1):55–71, 2002.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to Within
Almost-Polynomial Factors is NP-Hard. Combinatorica, 23(2):205–243, Apr
2003.

[Eli57] Peter Elias. List Decoding for Noisy Channels. Technical Report 335, Research
Laboratory of Electronics, 1957.

[EOR91] N. D. Elkies, A. M. Odlyzko, and J. A. Rush. On the Packing Densities of Su-
perballs and Other Bodies. Inventiones Mathematicae, 105:613–639, December
1991.

[FT87] A. Frank and Éva Tardos. An Application of Simultaneous Diophantine Ap-
proximation in Combinatorial Optimization. Combinatorica, 7(1):49–65, Jan
1987.

[Gen09] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
STOC ’09, pages 169–178, New York, NY, USA, 2009. Association for Com-
puting Machinery.

[GL89] O. Goldreich and L. A. Levin. A Hard-Core Predicate for All One-Way Func-
tions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, pages 25–32, New York, NY, USA, 1989. Association
for Computing Machinery.

[GMSS99] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating Shortest
Lattice Vectors is Not Harder than Approximating Closest Lattice Vectors.
Information Processing Letters, 71(2):55–61, 1999.

[GN08] Nicolas Gama and Phong Q Nguyen. Finding Short Lattice Vectors within
Mordell’s Inequality. In Proceedings of the fortieth annual ACM symposium on
Theory of Computing, pages 207–216, 2008.

[GP17] Elena Grigorescu and Chris Peikert. List-decoding Barnes–Wall lattices. Com-
putational Complexity, 26:365–392, June 2017.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard
Lattices and New Cryptographic Constructions. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, STOC ’08, pages 197––206,
New York, NY, USA, 2008. Association for Computing Machinery.

[GRS19] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding The-
ory, March 2019.

106

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of Reed-
Solomon and Algebraic-Geometry Codes. IEEE Transactions on Information
Theory, 45(6):1757–1767, 1999. Preliminary version in FOCS 1998.

[Gur01] Venkatesan Guruswami. List Decoding of Error Correcting Codes. PhD thesis,
Massachusetts Institute of Technology, 2001.

[HR07] Ishay Haviv and Oded Regev. Tensor-Based Hardness of the Shortest Vector
Problem to within Almost Polynomial Factors. In Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, page
469–477, New York, NY, USA, 2007. Association for Computing Machinery.

[IHKU14] Mabel Iglesias-Ham, Michael Kerber, and Caroline Uhler. Sphere Packing with
Limited Overlap, 2014.

[Kan87] Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming.
Mathematics of Operations Research, 12(3):415–440, 1987.

[Kho05] Subhash Khot. Hardness of Approximating the Shortest Vector Problem in
Lattices. Journal of the ACM (JACM), 52(5):789–808, 2005.

[KM23] Elena Kirshanova and Ekaterina Malygina. Construction-D Lattice from
Garcia-Stichtenoth Tower Code. Designs, Codes, and Cryptography, 92:1127–
1142, December 2023.

[KS09] Adam R. Klivans and Alexander A. Sherstov. Cryptographic Hardness for
Learning Intersections of Halfspaces. Journal of Computer and System Sciences,
75(1):2–12, 2009. Learning Theory 2006.

[KV03] Ralf Koetter and Alexander Vardy. Algebraic Soft-Decision Decoding of Reed-
Solomon Codes. IEEE Transactions on Information Theory, 49(11):2809–2825,
2003.

[Leo03] Jeffrey Leon. Computing Automorphism Groups of Error-Correcting Codes.
IEEE Transactions on Information Theory, 28(3):496–511, 2003.

[Lev12] Leonid A. Levin. Randomness and Non-Determinism, 2012.

[LLL82] Arjen Lenstra, Hendrik Lenstra, and Lovász László. Factoring Polynomials with
Rational Coefficients. Mathematische Annalen, 261, 12 1982.

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On Bounded Distance Decoding,
Unique Shortest Vectors, and the Minimum Distance Problem. In Shai Halevi,
editor, Advances in Cryptology - CRYPTO 2009, pages 577–594, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg.

[LO85] Jeffrey C Lagarias and Andrew M Odlyzko. Solving Low-Density Subset Sum
Problems. Journal of the ACM (JACM), 32(1):229–246, 1985.

107

[Mac33] C. C. Macduffee. The Theory of Matrices. Verlag von Julius Springer, 1933.

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding
Theory. DSN Progress Report, 1978.

[Mic12] Daniele Micciancio. Inapproximability of the Shortest Vector Problem: Toward
a Deterministic Reduction. Theory of Computing, 8(1):487–512, 2012.

[MKO18] Toshiki Matsumine, Brian M. Kurkoski, and Hideki Ochiai. Construction D
Lattice Decoding and Its Application to BCH Code Lattices. In 2018 IEEE
Global Communications Conference (GLOBECOM), pages 1–6, 2018.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom Knapsacks and the Sam-
ple Complexity of LWE Search-to-Decision Reductions. In Annual Cryptology
Conference, pages 465–484. Springer, 2011.

[MP22] Ethan Mook and Chris Peikert. Lattice (List) Decoding Near Minkowski’s
Inequality. IEEE Transactions on Information Theory, 68(2):863–870, 2022.

[MR04] D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions Based
on Gaussian Measures. In 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 372–381, 2004.

[MR07] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions
Based on Gaussian Measures. SIAM J. Comput., 37(1):267–302, 2007.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based Cryptography, pages
147–191. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[MSW25] Daniele Micciancio and Mark Schultz-Wu. Bit Security: Optimal Adver-
saries, Equivalence Results, and a Toolbox for Computational-Statistical Se-
curity Analysis. In Elette Boyle and Mohammad Mahmoody, editors, Theory
of Cryptography, pages 224–254, Cham, 2025. Springer Nature Switzerland.

[MV13] Daniele Micciancio and Panagiotis Voulgaris. A Deterministic Single Exponen-
tial Time Algorithm for Most Lattice Problems Based on Voronoi Cell Compu-
tations. SIAM Journal on Computing, 42(3):1364–1391, 2013.

[MW18] Daniele Micciancio and Michael Walter. On the Bit Security of Cryptographic
Primitives. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 3–28. Springer, 2018.

[Pei09] Chris Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector
Problem. In Proceedings of the forty-first annual ACM symposium on Theory
of Computing, pages 333–342, 2009.

[PP10] Ramamohan Paturi and Pavel Pudlak. On the Complexity of Circuit Satis-
fiability. In Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, STOC ’10, pages 241–250, New York, NY, USA, 2010. Association
for Computing Machinery.

108

[PR97] Erez Petrank and Ron M. Roth. Is Code Equivalence Easy to Decide? IEEE
Trans. Inf. Theory, 43(5):1602–1604, 1997.

[Pur73] G. B. Purdy. The Lattice Triple Packing of Spheres in Euclidean Space. Trans-
actions of the American Mathematical Society, 181:457–470, 1973.

[Reg06] Oded Regev. Lattice-Based Cryptography. In Cynthia Dwork, editor, Ad-
vances in Cryptology - CRYPTO 2006, pages 131–141, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[Reg09] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. J. ACM, 56(6), Sep 2009.

[RS94] Ron M. Roth and Paul H. Siegel. Lee-Metric BCH Codes and Their Applica-
tion to Constrained and Partial-Response Channels. IEEE Trans. Inf. Theory,
40(4):1083–1096, 1994.

[Sen00] Nicolas Sendrier. Finding the Permutation Between Equivalent Linear Codes:
The Support Splitting Algorithm. IEEE Trans. Inf. Theory, 46(4):1193–1203,
2000.

[Ser73] Jean-Pierre Serre. A Course in Arithmetic. Springer New York, NY, 1973.

[Sha48a] Claude E. Shannon. A Mathematical Theory of Communication. The Bell
System Technical Journal, 27(3):379–423, 1948.

[Sha48b] Claude E. Shannon. A Mathematical Theory of Communication. The Bell
System Technical Journal, 27(4):623–656, 1948.

[Sha85] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In
George Robert Blakley and David Chaum, editors, Advances in Cryptology,
pages 47–53, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[SS13a] Nicolas Sendrier and Dimitrios E. Simos. How Easy is Code Equivalence over
Fq? In International Workshop on Coding and Cryptography - WCC 2013,
Bergen, Norway, April 2013.

[SS13b] Nicolas Sendrier and Dimitris E. Simos. The Hardness of Code Equivalence
over Fq and Its Application to Code-Based Cryptography. In Philippe Gaborit,
editor, Post-Quantum Cryptography, pages 203–216, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[Tót83] G Fejes Tóth. New Results in the Theory of Packing and Covering. In Convexity
and its Applications, pages 318–359. Springer, 1983.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

109

[vEB81] Peter van Emde Boas. Another NP-Complete Problem and the Complexity of
Computing Short Vectors in a Lattice. Tecnical Report, Department of Math-
matics, University of Amsterdam, 1981.

[Woz58] John M. Wozencraft. List Decoding. Quarterly Progress Report, Research
Laboratory of Electronics, 1958.

[WY25] Shun Watanabe and Kenji Yasunaga. Bit-Security Preserving Hardness Am-
plification. In Elette Boyle and Mohammad Mahmoody, editors, Theory of
Cryptography, pages 195–223, Cham, 2025. Springer Nature Switzerland.

[Yan80] L. J. Yang. Multiple Lattice Packings and Coverings of Spheres. Monatshefte
für Mathematik, 89:69–76, 1980.

[ZV22] Yihan Zhang and Shashank Vatedka. List Decoding Random Euclidean
Codes and Infinite Constellations. IEEE Transactions on Information Theory,
68(12):7753–7786, 2022.

110

	Acknowledgements
	Table of Contents
	List of Figures
	Abstract
	Introduction
	A Brief History of Codes & Lattices
	Our Contributions
	A Note on Navigating this Thesis

	Preliminaries
	Notation
	Coding Definitions
	Matrix Groups
	Code Equivalence Problems
	Learning With Errors
	Lattice Definitions
	Computational Lattice Problems
	Fourier Analysis
	Probability and Distributions
	Lattice Smoothing & Roughness

	Computational Complexity
	Learning With Errors
	Alternative Measure of Computational Hardness
	From BDD to Search-LWE
	From Search-LWE to Decision-LWE
	Future Directions

	Code Equivalence
	Reductions from PCE to LCE and SPCE
	Future Directions
	Constructions
	List-Decoding Generalized Reed-Solomon Codes
	List-Decoding Reed–Solomon Codes
	General p (Quasi)Norms
	The 2 Norm and Gaussian Error
	The 1 Norm and Laplacian Error
	Future Directions

	Lattice List-Decoding Bounds
	Dense Lattices from Random Linear Codes
	Lattice List-decoding Capacity
	Future Directions
	Appendices

	Proof of Levin's Result
	Bibliography

