Reductions Between Code Equivalence Problems

Mahdi Cheraghchi, Nikhil Shagrithaya, Alexandra Veliche
Department of EECS
University of Michigan
Ann Arbor, MI
Email: {mahdich, nshagri, aveliche} @umich.edu

Abstract—In this paper, we present two reductions between
variants of the Code Equivalence problem. We give polynomial-
time Karp reductions from Permutation Code Equivalence (PCE)
to both Linear Code Equivalence (LCE) and Signed Permutation
Code Equivalence (SPCE). Along with a Karp reduction from
SPCE to the Lattice Isomorphism Problem (LIP) shown by
Bennett and Win (2024), our second result implies a reduction
from PCE to LIP.

I. INTRODUCTION

The Code Equivalence (CE) problem asks if two given codes
Cy and Cy are “equivalent” in some metric-preserving way;
variants of the CE problem specify the type of equivalence.
Permutation Code Equivalence (PCE) asks if the codes are
the same up to permutation of the coordinates of codewords,
while Signed Permutation Code Equivalence (SPCE) allows
equivalence up to signed permutations. Still more generally,
Linear Code Equivalence (LCE) allows an equivalence up
to permutation and multiplication by a (non-zero) constant.
The variants of CE belong to a larger class of isomorphism
problems that ask the following question: Given two objects
of the same kind, is there an isomorphism that transforms one
object into the other? Other examples of such problems include
Matrix Code Equivalence and Graph Isomorphism.

Besides being interesting problems in their own right, CE
problems have many important applications. Perhaps most
notably, the conditional hardness of CE variants has been used
as a security assumption for several cryptographic schemes
proposed to be post-quantum. These include the seminal
McEliece public-key encryption scheme [1], a recent NIST post-
quantum standardization submission called “Classic McEliece”
[2], and the more recent LESS identification scheme [3], [4].

Given the relevance of these problems to cryptography, there
has been a considerable amount of work on designing efficient
algorithms that solve these problems. Leon [5] introduced an
algorithm for the search version of PCE that works well for
a large number of codes, but still requires exponential time
in the worst case. The Support Splitting Algorithm developed
by Sendrier in [6] and extended by Sendrier and Simos in [7]
gives an algorithm for linear codes that is efficient for codes
with small hull, where the hull of a code is defined by the
intersection of the code and its dual. This algorithm, however,
does not work for the case where the dimension of the hull
is zero, but this case was later handled by Bardet, Otmani,
and Saeed-Taha in [8]. In the latter paper, the authors reduce
the problem of deciding PCE to a weighted version of Graph

Isomorphism, and then use a variant of Babai’s algorithm for
solving the latter problem [9] to give a quasi-polynomial time
algorithm that computes PCE for the zero hull case.

On the other side of the cryptographic coin, considerable
attention has been devoted towards understanding the com-
putational hardness of these problems. Petrank and Roth in
[10] showed that Graph Isomorphsim reduces to PCE, and
that PCE is not NP-complete unless the polynomial hierarchy
collapses. This was used as evidence for the computational
hardness of PCE until Babai introduced his quasi-polynomial
time algorithm for deciding Graph Isomorphism [9]. Even under
the assumption that the polynomial hierarchy does not collapse,
however, it is still possible that both Graph Isomorphism and
PCE cannot be decided in polynomial time.

In [7], Sendrier and Simos give a reduction from LCE
to PCE that runs in time polynomial in the blocklength n
and alphabet size g of the codes. The closure of a code
C C Fy is the set defined by taking every codeword and
multiplying each of its n coordinates with all the non-zero
field elements to produce a new vector of length n(q — 1).
Then using the fact that multiplication by any non-zero field
element induces a permutation on the elements in F, they
reframe scalar multiplication as a permutation over Fy. In [11],
Ducas and Gibbons use a specific form of this closure to prove
a reduction from SPCE to PCE. Biasse and Micheli in [12]
give a search-to-decision reduction for PCE, which implies
that the decision version of PCE is at least as hard as the
search version. Bennett and Win in [13] give several reductions
between CE variants and other isomorphism problems. They
extend the closure technique from [7] to give a reduction from
LCE to SPCE and a reduction from SPCE to the Lattice
Isomorphism Problem (LIP).

LIP is an analogous problem to GE for lattices. A lattice is
a discrete additive subgroup of Euclidean space generated by
all integer linear combinations of a set of linearly independent
vectors; these vectors form a basis for the lattice. Two
lattices are said to be isomorphic if there exists an orthogonal
transformation that transforms one lattice (basis) into the other.
LIP asks if such an isomorphism exists. In their reduction from
SPCE to LIP, Bennet and Win use a well-known construction
(called Construction A) that lifts a linear code over a prime
finite field IF}, to a lattice in R™. Because this construction is
only well-defined for prime fields, their reduction only works
for prime fields. It remains an open problem to find a reduction
from any CE variant to LIP for non-prime fields.

A. Results

Now we state our main results and place them into context
of the prior work described above. In [13], the authors prove
Karp reductions from LCE to PCE and LCE to SPCE. In our
work, we show a reverse Karp reduction from PCE to LCE.

Theorem I.1 (PCE reduces to LCE, informal). For linear
codes with blocklength n over a field of size q, there is a
reduction from PCE to LCE that runs in poly(n,log q) time.

The formal statement is given in Theorem III.1. This result,
along with the Karp reduction in [13], [14] from LCE to PCE
running in poly(n,¢) time, implies that the problems LCE
and PCE are computationally equivalent up to factors in the
runtime that are polynomial in n and gq.

Additionally, the Karp reduction from LCE to SPCE detailed
in [13, Theorem 4.4, Corollary 4.5] combines with our result
to give a reduction from PCE to SPCE running in poly(n, q)
time. In situations where ¢ is much larger than n (as is the
case for Reed-Solomon codes, for example), it is desirable to
have the runtime depend only logarithmically on ¢. Note that
at least log ¢ time is required to express a single element of
the field, so the dependence on g cannot be smaller than log g.
Our second result is a Karp reduction from PCE to SPCE
whose runtime depends only logarithmically on gq.

Theorem 1.2 (PCE reduces to SPCE, informal). For linear
codes with blocklength n over a field of size q, there is a
reduction from PCE to SPCE that runs in poly(n,log q) time.

The formal statement is given in Theorem II1.2. This result,
together with a Karp reduction from SPCE to PCE from
[11, Lemma 10] running in poly(n,logq) time, implies that
PCE and SPCE are computationally equivalent problems up
to factors in the runtime that are polynomial in n and loggq.

Finally, by combining the above result with the Karp
reduction from SPCE over prime fields to LIP from [13,
Theorem 5.1], we obtain the following corollary.

Corollary 1.3 (PCE reduces to LIP). For any prime p, there
is a Karp reduction from PCE over a field of order p to LIP
that runs in poly(n,logp) time.

II. PRELIMINARIES

Let N denote the set of all positive integers. For any n, m €
N such that n < m, we use the notation [n,m] to denote
the set of integers {n,n+1,...,m}. For n € N, we use the
abbreviated notation [n] := [1,n]. For any prime power ¢ € N,
we use [F; to denote the field of size ¢q. For any commutative
ring R, we denote its multiplicative subgroup by R*; for a
field F, we have F* = F \ {0}.

We use boldface lowercase letters, such as v, to denote
vectors and boldface uppercase letters, such as A, to denote
matrices. We use e; to denote the column vector containing a
one in the i-th position and zeros everywhere else, and 0 will
denote the all zeroes column vector. For any matrix A with n
columns and i € [n], we use A[i] to denote the i-th column.
We also use A[i, j] to denote the entry in the i-th row and j-th

column. To denote the block submatrix of a matrix A spanned
by rows r; through r; (inclusive) and columns ¢ through ¢,
(inclusive), we use the notation A[r; : rj, ¢k : cg].

A. Matrix Groups

For any field IF and n € N, we use the following notation for
special sets of nxn matrices over F: GL,, (F) denotes the group
of invertible matrices, P, (IF) denotes the set of permutation
matrices, SP,,(F) denotes the set of signed permutation
matrices, and M, (F) denotes the set of monomial matrices. A
permutation matrix P € P, (IF) contains exactly one 1 in each
row and column and Os everywhere else. A signed permutation
matrix P € SP,(F) contains exactly one non-zero entry in
each row and column, but each of these can be either 1 or —1. A
monomial matrix M € M,,(IF) contains exactly one non-zero
entry in each row and column, but these can take values in F*;
any monomial matrix M can be written as M = DP for some
diagonal matrix D = diag(dy, ...,d,), where d; € F*, and
permutation matrix P € P, (F). Each of these sets of matrices
forms a group under matrix multiplication. Furthermore, these
satisfy P, (F) C SP,(F) C M,,(F) C GL,(F). If it is clear
from context, we do not specify the field for these matrix
groups. For any permutation matrix P € SP,,, we denote the
corresponding permutation map over the set of column indices
by op: [n] — [n]. The following observation will be useful
for our reduction in Section III.

Observation IL.1. Any invertible matrix S € GL(FF) induces
a bijective map on F*. In particular, for any x, y € F*, we have
Sx = Sy if and only if x = y. Then when S is multiplied by
some matrix A of the appropriate dimension, it maps identical
(distinct) columns in A to identical (distinct) columns in SA.

B. Codes

A linear code is a finite-dimensional vector space over a
finite field. Let I, be a finite field of size ¢ for some prime
power g. Using the standard notation for linear codes, we say
C C Fy is a [n, k,d]4-code for some g,n, k,d € N, where ¢
is the alphabet size, n is the blocklength given by the length
of the codeword vectors, k is the dimension of C as a linear
subspace of Fy, and d is the minimum distance given by the
minimum Hamming weight over all non-zero codewords of
C. Any linear code C can be expressed as the row span of a
generator matrix G €]FZX”. Note that this is not unique (as
elementary row operations do not change the span of G).

C. Equivalence Problems

Two codes C,C" C Ty are said to be permutation equivalent
if there exists a permutation of the coordinates of C that gives
C’. We formalize this notion and define two variants of this
problem below.

Definition II.2 (PCE, SPCE, LCE). For n,k € N and
field F, of size g, the Permutation Code Equivalence (re-
spectively, Signed Permutation Code Equivalence, Linear
Code Equivalence) problem, denoted by PCE (respectively,
SPCE, LCE), is the following decision problem: Given a pair

of generator matrices G, H ¢]F’;X”, decide whether there
exist an invertible matrix S € GL(F,) and a permutation
matrix P € P, (F,) (respectively, signed permutation matrix
P’ € SP,(F,), monomial matrix M € M, (F,)) for which
SGP = H (respectively, SGP’ = H, SGM = H) holds.

For brevity, we say that a pair of matrices (G, H) is in PCE
(or SPCE, LCE) if G and H satisfy the conditions required
for the pair to be a YES instance of the problem.

III. REDUCTIONS FROM PCE TO LCE AND SPCE

We formally state our results below and prove them in this
section. All our reductions are deterministic Karp reductions,
so we do not specify this in our statements hereafter.

Theorem III.1 (PCE reduces to LCE). There is a reduction
from PCE to LCE that runs in poly(n,log q) time, where n
is the blocklength and q is the field size of the input code pair.

Theorem IIL2 (PCE reduces to SPCE). There is a reduction
from PCE to SPCE that runs in poly(n,logq) time, where n
is the blocklength and q is the field size of the input code pair.

We will use the following two lemmas to justify why certain
assumptions about the input can be made without loss of
generality.

Lemma IIL3. Let k,n € N and ¢ be a prime power. For any
matrices G, H € IF’;X”, if (G,H) is in PCE, then no column
of G appears in G more times than a column of H appears
in H.

Proof: By definition, there must be some S € GLj; and
P € P, such that SGP = H. By Observation II.1, S takes
identical columns in G to identical columns in SG. When
multiplied with G on the right, P only permutes the columns
of G and so does not change the frequency with which any
column appears in the matrix SG. Therefore for every column
c in SG, its corresponding column in H must appear the same
number of times as c appears in SG.]

Lemma IIL4. For any G,H € F}*", let G and H be the
submatrices of G and H, respectively, obtained by removing
all columns equal to 0 € F’(j Then G and H satisfy the PCE
condition if and only if G and H satisfy the PCE condition.

This lemma follows from the following trivial reduction:
If G and H satisfy the PCE condition, there exist matrices
S € GL; and P € P,, such that SGP = H. Because S is a
linear map, it will always map O € IF’; to itself, so there is an
invertible submatrix of S and a permutation submatrix of P
for which G and H satisfy the PCE condition.

As a result of Lemma II1.4 and Lemma II1.3, we can assume
without loss of generality that any given input pair of matrices
do not contain a zero column and have the same column
frequency.

Now we define the construction that will be used to transform
the input matrices in our reduction.

Construction IILS. Given a k x n matrix A over F, with
column vectors A[l],...,A[n] € FF, let ma denote the

maximum number of times a column appears in A. Denote
m := ma +1. We construct the k£ x nm matrix A by appending
m copies of each column vector in order. More explicitly, for
every i € [n] and j € [m], we set A[(i — 1)m + j] := Ali].
Define the (k + 1) x n matrix A/ by appending a row of all
ones at the bottom of matrix A, define the (k1) X nm matrix
./}’2 by appending a row of all zeros at the bottom of matrix
A, and define the (k + 1) x (nm + 1) matrix Aj by placing
ones in every entry of the last row and zeros everywhere else.
Denoting n’ := n + 2nm + 1, we obtain the final (k+ 1) x n’
matrix A’ by concatenating the block matrices A/, A, and
Ag:A’::[Al | AL | Af]

A A 0

11...1

Fig. 1. The matrix A’ obtained by Construction IIL5.

Note that if the given matrix A has full row rank, then A’
must have full row rank.

With these assumptions and definitions in place, we now
prove Theorem III.1.
Proof of Theorem IIl.1: Given a pair of matrices
G, H € F¥*™ as input, we construct matrices G’, H' according
to Construction III.5. By Lemma II1.4, we can assume without
loss of generality that G and H do not contain any zero
columns. We can also assume without loss of generality that
G and H have the same rank, otherwise (G, H) cannot be in
PCE. Let mg denote the maximum number of times a column
appears in G, and define my similarly. By Lemma IIL.3, we
must have mg = my. Denoting m := mg +1 = mg + 1
and n’ := n + 2nm + 1, we obtain (k + 1) x n’ matrices
G’ and H'. Note that because m < n + 1, these matrices
can be constructed deterministically in poly(n,loggq) time.
The claim in Theorem III.1 then follows from Lemma III.6
and Corollary III.11, which are stated and proven below. H

The proof of Theorem III.2 is nearly identical to the above
proof, but with a restriction to the set of signs {—1, +1} instead
of all non-zero field elements in the proof of Corollary III.11.

A. From PCE to LCE

First we show the forward direction. We prove that our
construction preserves the permutation equivalence of the input
pair, which gives the following stronger result.

Lemma IIL6. For any G,H € F}*", if (G,H) is in PCE,
then (G’, H') is in PCE (and therefore in LCE).

For the proof of this lemma, we refer the reader to the full
version of this paper available online (due to space limitations,
we have omitted this in the present version).

Because the matrix groups are nested P, C SP, C M,,
Lemma II1.6 immediately implies the first direction of both
statements Theorem III.1 and Theorem III.2.

B. From LCE to PCE

Now we prove the other direction, and show that if the
constructed matrix pair (G’, H') is in LCE, then the original
matrix pair (G, H) must be in PCE. This requires some careful
analysis of how the change-of-basis matrix S and monomial
matrix M affect each block of the matrices G’ and H'.

First we show that for any monomial matrix M = DP for
which (G’,H’) is in LCE, the permutation matrix P must
respect the “boundaries” between the block matrices of G'.

Lemma IIL7. For any G, H ¢ IE";X”, if S'G'M’ = H’ for
some S’ € GLy1 and M’ = D'P’ € M,,/, where P’ € P/,
then the corresponding permutation map op:: [n'] — [n/]
satisfies the following:

(i) For every i € [1,n], op/(i) € [1,n].

(i) For every i € [n+1,n+mn], op/(i) € [n+ 1,n + mn].
(iii) For every i € [n+nm+1,n'], op/ (i) € [n+mn+1,n].

Proof: As a result of Lemma II1.4, we can assume without

loss of generality that G and H do not contain a zero column.

Suppose S’ € GLgy1; and M’ = D'P’ € M, satisfy
S'G'M’ = H'. By definition, S’ has an inverse S~ € GLj 1,
SO we can rewrite

G'M' =S''H'. (I11.1)
By Observation II.1, S’~! maps identical columns in H’ to
identical columns in S’~'H’. To prove each part of the claim,
we analyze the effect of S'~! on each block H}, H), H} of
matrix H'.

First we prove part (iii). By construction, the last nm + 1
columns of H’, contained in HY are identical to ej41. By
assumption, H does not contain a zero column, so no other
column in H' outside of the block HY is equal to ej1. Then
each of the nm + 1 columns in S'~'HY, and no other column
of S’~'H’, is equal to S'lej ;.

By Equation (IIL.1), the last nm + 1 columns of G'M’ must
be identical and equal to S’"ley. ;. Since M’ = D'P’ for
some diagonal matrix D’ and permutation P’, it maps each
column in G’ to a (possibly) scaled permutation of that column
in G'M’. Thus, the matrix M’ must scale and permute the
columns of G’ to produce nm + 1 identical columns in the
last block of G'M’. We claim that multiplying by M’ cannot
cause the number of copies of a column in G’ to increase in
G'M’. In particular, no two columns from different blocks of
G’ can be scaled to produce identical columns in G'M’. By
construction, the last row of G’ ensures that no column of
G/, can be scaled to produce a column of G, so M’ cannot

map columns from G} and G to identical columns in G'M’.

Additionally, M’ maps every ej11 column in G} to a scaling
of e41 in G'M’, and since no column in G} or G/, can be
scaled to produce a multiple of ey, all scalings of e,y in
G'M’ can only come from Gf%. The only column in G’ that
appears nm + 1 times is ey from G%. In this way, M’ can
only produce nm + 1 identical columns in the last block of
G’M’ by mapping from the nm+1 columns of G§. Therefore,
op: (i) maps every column with index in [n +mn + 1,7n/] to
a column with index in [n +mn + 1,7n/].

Next we show part (ii). By part (iii), any column with index
i € [n+ 1,n + mn] is permuted to a column with index
op/ (i) < n+mn, so it is enough to show that op- (i) > n+ 1.
Suppose for the sake of contradiction that there is a column
with index ¢ € [n+ 1,n + nm] in G’ that is mapped to a
column with index op/ (i) € [1,n]. By design, the last entry
of the columns in Gf is 1 and differs from the last entry O of
the columns in G, so each column in G/ appears strictly less
than m times. Then, if M’ permutes any number of columns
from G/ with the same number of columns in GY, there will
be some column in the second block of G'M’ that appears
less than m times. But by Observation II.1, every column in
S’~'H/, appears at least m times, and since the second block
of G'P’ must be equal to S’~'HY, this gives a contradiction.
Finally, part (i) follows immediately from parts (ii) and (iii).
|

This result gives the following corollary.

Corollary IIL8. For any G’,H',S’, M’ as in Lemma IIL7,
the monomial matrix M’ is comprised of three block matrices
M; € M,,, My € My, M3 € M1, such that M, My,
and M3 only act on the first n, next nm, and last nm + 1
columns of G’, respectively.

M,

M,

M3

Fig. 2. The structure of matrix M’.

Now, we use this lemma to show that any invertible matrix
for which (G’,H’) is in LCE must contain only zeros in the
last row and last column, except for the last entry.

Lemma IIL9. For any G’, H’,S’, M’ as in Lemma IIL.7, the
change-of-basis matrix S’ satisfies the following properties:

(i) The last column of S’ contains zeros in the first % entries.
(ii) The last row of S’ contains zeros in the first k entries.
(iii) The entry S’[k + 1,k + 1] is non-zero.

Proof: By definition, S’ has an inverse S’~! € GLj 41,
so we can write G'M’ = S’"'H’. By Observation II.1, 8’}
maps identical columns in H' to identical columns in S'~'H’.
To prove each part of the claim, we analyze the effect of S'~!
on each block HY, and H, in the right-hand side of the equation.
By Corollary II1.8, we know that M’ is comprised of three
block matrices M; € M,,, My € M., and M3 € M 41
that affect the first n, next nm, and last nm + 1 columns of
G’, respectively. This allows us to write GLM, = S'~1H)
and G4M; = S'~'Hj.

For part (i), consider the equation G;M3 = S’~1H}. By
construction, all columns of G% and HY are identical and equal
to eg1. Since M3 permutes all columns of G and multiplies
them by a non-zero scalar, all columns of G5M3 must be of

the form a - ex4; for some non-zero a. By Observation II.1,
all columns of S'~'H} are identical. Then for any column
a - epy1 of GEMj3, we have S/'(a - eg41) = eg41. If any of
the first k£ entries of the last column of S’ is non-zero, then the
corresponding entry in S'(a - €;11) = €g41 must be non-zero,
but this is not the case. Therefore, the last column of S’ must
contain zeros in the first £ entries.

For part (ii), consider the equation G,M, = S'~1H). By
construction, the last rows of GY and HY only contains zeros.
By Lemma IL.7, no columns in G,Ms could have been
mapped from outside G%, so the last row of G5M must only
contain zeros. Since G is a submatrix of G5 with full row rank
k, the first & rows of G5, denoted by G in Construction IIL.5,
form a submatrix of rank k. Then G also has column rank £,
and because the last row of G/, only contains zeros, G, must
contain k linearly independent columns. By Corollary III8,
we know that G5 M, is entirely comprised of columns of G/
multiplied by a non-zero scalar, so G,Ms has column rank
k. Then the first & rows of G5Mj form a submatrix of rank
k. By definition, the last row of S’ contains the coefficients
that specify the linear combination of rows of G5Ms which
gives the last row of Hy. But since the first & rows of G5 My
are linearly independent, no linear combination of these can
produce the all-zero last row of Hs. Therefore, the first &
entries in the last row of S’ must be zero.

Part (iii) follows immediately from parts (i) and (ii) and the
fact that S’ is invertible. [|

Finally, we show how Lemmas III.7 and III.9 combine to
ensure the existence of an unsigned permutation for which

(G,H) is in PCE.

Corollary IIL.10. Let M’ € M,, be a permutation with block
submatrices M1, My, M3 as in Corollary III.8. Then, M; =
a - P for some permutation P € P,, and non-zero scalar a.

Proof: By Corollary I11.8, we can write GiM; = S'~'H].
By Lemma II1.9 and Observation II.1, the last row of S’ e &
and hence the last row of G{M;j, must be of the form
(a,a,...,a) for some non-zero scalar a. By construction, the
last row of GY contains only ones. Since M; acts on G by
permuting and scaling the columns of G/, and since the last
row of G{M; contains identical entries a, we infer that M;
must multiply each column by the same scalar a. Therefore,
M; = a - P for some unsigned permutation P € P,, and
non-zero scalar a. u
Finally, we use the structure of the permutation and change-
of-basis matrix for any pair of matrices (G’,H’) in LCE to
show that the original matrix pair (G, H) must be in PCE.

Corollary IIL11. For any G,H € F/*", if (G/,H') is in
LCE, then (G, H) is in PCE.

Proof: If (G’,H’) is in LCE, then there exists a monomial
matrix M’ € M, and an invertible matrix S’ € GLgy1
such that S'G'M’ = H’. By Corollary II1.8, we know
that M’ is comprised of three block matrices M; € M,
M, € My, and Mg € M1 which act exclusively
on the first n, next nm, and last nm + 1 columns of G,

respectively. By Corollary III.10, we know that M} = a - P
for some unsigned permutation P € P,, and non-zero scalar a.
By Lemma II1.9, the last row and last column of S’ contain
only zeros, except in the last entry. Let S € GLj denote the
top-left block submatrix of S’ consisting of the intersection of
the first k£ rows and & columns. Since S’ must have a non-zero
determinant, this implies that S must be invertible. Then since
a is non-zero, a - S is also an invertible matrix. By construction
of G’ and H', Lemma IIL.9, and Corollary III.8, we have the
block matrix product SGM; = H. Then for the matrices
(a-S) and P we obtain

(a-S) GP=S G (a-P)=SGM,; = H.
Therefore, (G, H) is in PCE. |

For the reverse direction of Theorem II1.2, the proof is nearly
identical to the one for LCE, but with the assumption that all
non-zero scalars are restricted to the set of signs {—1,+1}.

IV. CONCLUSION

Our results imply that the CE variants described above are
nearly computationally equivalent, from the perspective of
polynomial-time algorithms. In particular, we have shown that
LCE and SPCE are at least as hard as PCE, so in order to
study the hardness of the former two problems, it suffices to
focus on the hardness of PCE. We now have more reductions
among the CE variants, and in consequence, from these variants
to LIP, yet it remains an open problem to reduce LIP to any
CE problem. While there has been some small progress in this
direction, namely Ducas and Gibbons’ Turing reduction from
LIP for Construction A lattices to SPCE for codes with zero
hull [11], no other progress has yet been made.

Another interesting open problem is to improve the runtime
of the reduction from LCE to PCE proven in [7] from
poly(n, q) to poly(n,log q). Their reduction requires time poly-
nomial in the alphabet size ¢ because the closure (see Section I
for details) increases the blocklength of the codes from n to
(¢ — 1)n. Any reduction running in log ¢ time would either
need to use a new type of closure that requires only a log g
increase in blocklength, or a more efficient way to transform
scalar multiplication operations into permutations.

V. ACKNOWLEDGMENTS

The authors would like to thank Huck Bennett, Chris Peikert,
and Yi Tang for helpful conversations during the course of this
work. This research was partially supported by the National
Science Foundation under Grant No. CCF-2236931.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” DSN Progress Report, 1978.

M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange,
V. Maram, 1. von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai,
M. Tomlinson, and W. Wang, “Classic McEliece,” NIST PostQuantum
Cryptography Standardization Project submission, 2022.

A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini, “LESS-
FM: Fine-tuning signatures from the code equivalence problem,”
Cryptology ePrint Archive, Paper 2021/396, 2021. [Online]. Available:
https://eprint.iacr.org/2021/396

——, “On the computational hardness of the code equivalence problem
in cryptography,” Cryptology ePrint Archive, Paper 2022/967, 2022.
[Online]. Available: https://eprint.iacr.org/2022/967

J. S. Leon, “Computing automorphism groups of error-correcting codes,”
IEEE Trans. Inf. Theory, vol. 28, no. 3, pp. 496-510, 1982. [Online].
Available: https://doi.org/10.1109/TIT.1982.1056498

N. Sendrier, “Finding the permutation between equivalent linear
codes: The support splitting algorithm,” IEEE Trans. Inf. Theory,
vol. 46, no. 4, pp. 1193-1203, 2000. [Online]. Available:
https://doi.org/10.1109/18.850662

N. Sendrier and D. E. Simos, “How easy is code equivalence
over Fq?” in International Workshop on Coding and Cryptography
- WCC 2013, Bergen, Norway, Apr. 2013. [Online]. Available:
https://inria.hal.science/hal-00790861

M. Bardet, A. Otmani, and M. Saeed-Taha, “Permutation code
equivalence is not harder than graph isomorphism when hulls are trivial,”
in IEEE International Symposium on Information Theory, ISIT 2019,
Faris, France, July 7-12, 2019. 1EEE, 2019, pp. 2464-2468. [Online].
Available: https://doi.org/10.1109/ISIT.2019.8849855

[9]

[10]

(11]

[12]

[13]

[14]

L. Babai, “Graph isomorphism in quasipolynomial time [extended
abstract],” in Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, D. Wichs and Y. Mansour, Eds. ACM, 2016, pp. 684—697.
[Online]. Available: https://doi.org/10.1145/2897518.2897542

E. Petrank and R. M. Roth, “Is code equivalence easy to decide?”
IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1602—-1604, 1997. [Online].
Available: https://doi.org/10.1109/18.623157

L. Ducas and S. Gibbons, “Hull attacks on the lattice isomorphism
problem,” in Public-Key Cryptography - PKC 2023 - 26th IACR
International Conference on Practice and Theory of Public-Key
Cryptography, Atlanta, GA, USA, May 7-10, 2023, Proceedings, Part I,
ser. Lecture Notes in Computer Science, A. Boldyreva and V. Kolesnikov,
Eds., vol. 13940. Springer, 2023, pp. 177-204. [Online]. Available:
https://doi.org/10.1007/978-3-031-31368-4_7

J. Biasse and G. Micheli, “A search-to-decision reduction for
the permutation code equivalence problem,” in IEEE International
Symposium on Information Theory, ISIT 2023, Taipei, Taiwan,
June 25-30, 2023. 1EEE, 2023, pp. 602-607. [Online]. Available:
https://doi.org/10.1109/1S1T54713.2023.10206940

H. Bennett and K. M. H. Win, “Relating code equivalence to other
isomorphism problems,” Cryptology ePrint Archive, Paper 2024/782,
2024. [Online]. Available: https://eprint.iacr.org/2024/782

N. Sendrier and D. E. Simos, “The hardness of code equivalence over
F, and its application to code-based cryptography,” in Post-Quantum
Cryptography, P. Gaborit, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 203-216.

