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Abstract—Plants are vital to the health of our biosphere,
and effectively sustaining their growth is fundamental to the
existence of life on this planet. A critical aspect, which decides
the sustainability of plant growth is the quality of soil. All other
things being fixed, the quality of soil greatly impacts the plant
stress, which in turn impacts overall health. Although plant
stress manifests in many ways, one of the clearest indicators are
colors of the leaves. In this paper, we conducted an experimental
study in a greenhouse for detecting plant stress caused by
nutrient deficiencies in soil using smart-phone cameras, coupled
with image processing and machine learning algorithms. The
greenhouse experiment was conducted by growing two plant
species; willows (Salix Pentandra) and poplars (Populus deltoides
x nigra, DN34), in two treatments. These treatments included:
unamended tailings (collected from a lead mine tailings pond
and characterized by nutrient deficiency), and biosolids amended
tailings. Biosolids are very rich in nutrients and were added to
the tailings in one of the two treatments to supply plants with
nutrients. Subsequently, we captured various images of plant
leaves grown in both soils. Each image taken was pre-processed
via filtration to remove associated noise, and was segmented
into pixels to facilitate scalability of analysis. Subsequently, we
designed random forests based algorithms to detect the stress of
leaves as indicated by their coloring. In a dataset consisting of
34 leaves, our technique yields classifications with a high degree
of prediction, recall and F1 score. Our work in this paper, while
restricted to two types of plants and soils, can be generalized. We
see applications in the emerging area of urban farming in terms
of empowering citizens with tools and technologies for enhancing
quality of farming practices.
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I. INTRODUCTION

Vegetation offers a broad benefit to society, primarily as our
counter parts in the global carbon and water cycle by producing
all the oxygen we need, and also serving as a critical source
of our food. Plants are also vital in connecting our terrestrial
world with the atmospheric water cycle. A number of studies
are being conducted today to enable healthier growth of plants
in our biosphere. A critical factor that decides the overall health
and sustainability of plants is the soil in which they grow.
Numerous studies have shown that plants grown in superior
(i.e., nutrient rich) soils are much more healthy, resistive to
disease and live longer than plants that grow in nutrition
deficient soils [1][2][3][4][5], and as such understanding the

overall health of plants in relation to the soil in which they
grow is important.

A critical component of plant health is decided by plant
stress responses, which are characterized by a suite of molec-
ular and cellular processes that are triggered by the plant in
some form of stress. Stresses can be abiotic, such as drought or
excess light, or biotic, such as herbivores or pathogens. Studies
have shown that, while plants do indicate their stress via
variation of leaf in chemical content [6] and molecular changes
[7] [8], the colors of leaves are also clear indicators of plant
stress [9][10][11]. In particular, deficiency of nutrients such
as nitrogen, phosphorous, potassium, calcium, and magnesium
in soils results in changes in coloring patterns of leaves.
Healthier/Stress free leaves are typically greener in color,
while increased yellowing indicates progressively un-healthier
leaves [9][10][11]. Unfortunately, existing techniques to detect
plant health and stress incur expensive infrastructure, and/ or
significant manual effort.

In this paper, we are broadly motivated to leverage off-the-
shelf smart-phones, and their in-built cameras to assess plant
stress based on the soil quality, (both nutrient deficient and
nutrient rich). In our experiments conducted in a greenhouse
facility, we grew laurel-leaf willows (scientifically known
as Salix Pentandra) and poplars (Populus deltoides x nigra,
DN34) in two treatments - unamended tailings and tailings
amended with biosolids. Tailings are waste product associated
with mining activities of extracting economic minerals from
the ore. These tailings usually lack some of the essential
nutrients and have very poor soil structure. To improve soil
quality, we considered biosolids as an amendment to be
added to some of these tailings soils to improve nutrition.
Subsequently, a total of 34 leaves were imaged using the built-
in camera of a Samsung GALAXY S4 phone, with the goal
being to identify plants stress based on the coloring of the
leaves. Within this scope, our contributions are the following.

a. Image Preprocessing Techniques: Due to limited
processing power of smartphones, image resizing is impor-
tant. In our analysis, we determined that resizing images
from 4182 × 2322 pixels (that is typical in the phone) to
413 × 233 pixels greatly saved on computational overhead
without compromising accuracy significantly. Then, filtering
techniques like mean, median and sharpening filters were used
to remove unwanted noise. Filtering takes care of variation of



brightness and color information up to certain degree. Then
image segmentation was utilized to get region of interest which
in our case are leaves, that makes analysis easier and faster by
reducing the number of pixels.

b. Learning Algorithms based on Random Forests: We
designed a classification algorithm based on Random Forests
[12][13][14] for classifying plant stress. Random forests is
an ensemble supervised machine learning technique which
uses decision tree as base classifier. For every single tree,
feature/split-points are randomly selected from set of features
based on information gain. It uses decision tree which is very
fast in predicting results which is an important requirement
when we attempt classification problems involving big data
sets like image data.

c. Evaluation : We evaluated our algorithm on 34 leaves
taken from plants grown in both soils. Of these, images
from 15 were used for training and 19 for testing. Based on
cross validation analysis, we demonstrated that our algorithm
achieves a high degree of precision, recall and F-1 score.

We point out that our work in this paper is restricted to only
two types of plants and soils. However, with more experiments,
we can generalize our technologies much more for wider
applicability. Another area where we believe our work will be
impactful is urban farming, that is receiving a lot of attention
today to enable greener societies with numerous benefits. For
instance, studies show that every $1.00 invested in community
plots can yield upto $6.00 worth of vegetables. Food produced
in urban farms is fresher and retains nutritional value better,
compared to food that travels. Urban farms save energy and
water in multiple ways, and have shown correlations with
economic prosperity and happier societies. We believe that our
work in this paper provides foundations for innovative tools
and technologies for urban farmers of tomorrow, and exploring
this application in more detail is part of our on-going work.

II. RELATED WORK

In this section, we highlight important work on using
image processing techniques to assess plant stress. Lindow
and Webb [9] proposed thresholding based methods on images
of plants captured using analog video cameras under a red
light illumination to detect necrotic areas of the plant. In [10],
thresholding and segmentation methods were used to quantify
the severity of coffee leaf rust on plants with images taken
from both black & white, and color charge coupled device
(CCD) cameras. Similar techniques using CCD cameras are
also proposed by Story et al. [15] to detect calcium deficiency
in lettuce . Carter et al. [16] also used CCD cameras for early
detection of plant stress. The experiments involved collecting
images and physiological measurements of stress due to factors
like rainfall, exposure to herbicide etc. For digital imaging, leaf
fluorescence and reflectance value at certain wavelengths were
used for classification. All these techniques unfortunately re-
quire specialized equipment that is cost prohibitive for broader
applications and requires considerable expertise, and are also
time and resource intensive.

A number of techniques have also been proposed to use
commercially available digital cameras to assess plant stress.
Bock et al. [17] shown that images of leaves when captured
and processed using state-of-the-art photoshop techniques do

reveal insights on plant stress. The issue though is the amount
of manual inspection involved. Abdullah et al. [11] proposed
a method which discriminates a given disease (corynespora)
from other pathologies that affect rubber tree leaves. In the
proposed approach Principal Component Analysis is applied
directly to the RGB values of the pixels of a low resolution
(15×15 pixels) images of the leaves, which were obtained by
FinePix 6900 Zoom (Fuji Film) digital camera. The first two
principal components are then fed to a Multilayer Perceptron
(MLP) Neural Network with one hidden layer, whose output
reveals if the sample is infected by the disease of interest or
not. The resolutions of images used here were quite low, that
leads to reduced accuracy of classification, and the proposed
neural network approach is computationally very expensive.
Another technique proposed by Sena et al [18] discriminates
between maize plants affected by fall armyworm from healthy
ones using images captured from digital cameras. Their ap-
proach pre-processes the images and partitions them into 12
blocks, and counting the number of connected diseased regions
are used as indicators of plant stress. This approach requires
significant training to determine thresholds and also requires
manual inspection, which limits its practicality.

Comparing our Work w.r.t. Related Work: At the outset,
the core novelty of our work lies in using off-the-shelf smart-
phone (i.e., Samsung GALAXY S4) cameras to detect stress
in plant leaves. As such, the generating more images (for
superior training and classification) is much more easy now.
However, there are some challenges with smart-phone cameras
(and possibly un-trained citizens using these cameras), which
we need to resolve. The first challenge comes from the limited
processing capability of phones, for which appropriate image
compression needs to be employed, without compromising
accuracy of classification. Our analysis revealed that a tenfold
reduction in images provides a high degree of classification
accuracy, while greatly minimizing overhead. The second chal-
lenge comes from noise associated with image, for which we
use mean, median and sharpening filters, which have relatively
low complexity, and provide significant reductions in overall
noise.

Also, with more images, there is associated problem of
scalability of algorithmic techniques to process these images.
Image segmentation was employed to get regions of interest
which in our case are leaves, that makes analysis easier and
faster by reducing the number of pixels that need to be
processed. Finally, any algorithm designed must be accurate
and robust in classification of plant stress. While traditional
techniques like Support Vector Machine (SVM) and K-Nearest
Neighbors (KNN) can be applied, KNN is constrained by
the size of dataset. KNN is a deterministic classifier with
no stochastic property which results in low accuracy and
overfitting problem. KNN uses whole dataset for training
which creates the problem of overfitting. In KNN, frequent
class tends to dominate the prediction of the new data, because
they tend to be common among the k nearest neighbors due
to their large number. KNN also suffers from the problem of
k parameters. Selecting the correct value of fixed k is very
difficult task. State-of-the-art SVM also have some problems.
SVM is very slow for large dataset and does not provide
immunity to outliers. We employ a Random Forests Based
approach which uses bagging technique. It provides immunity
to outliers and harnesses the power of randomness property in



case of large datasets for superior accuracy. Instead of selecting
whole dataset for training, it divides the data into several mini-
batches and uses them for training separate decision tress and
then uses voting to select the class with most votes.

The overall technique we propose in this paper (images
capturing, filtering, segmentation, and classification) can be
easily encoded as a simple to use smart-phone app for wide
spread adoption (which is part of on-going work), and it is an
added feature of our work in this paper.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

Our experiments were conducted for three months in
Spring 2015 at a greenhouse facility situated in Missouri Uni-
versity of Science and Technology. Two soils were identified
for the study first. The first soil was a tailing soil collected from
a lead mine tailings pond. These tailings are waste product
associated with mining and smelting activities of extracting
economic minerals from the ore, as a result of which the soil
is nutrition deficient for sustaining healthy plant growth. More
specifically, the tailings lack organic matter and plant nutrients,
and characterized by slightly high pH . Availability of most
minerals essential for plant growth is strongly affected by soil
pH . As soil pH increases, bioavailability of nutrients such as
P,K, Fe,Mn,Zn,Cu decreases. [19][20].

The second type of soil used in this study was the tailing
soil treated with biosolids. The biosolids used in the experi-
ment were prepared by drying sewage sludge collected from
a water treatment plant. The biosolids were rich in organic
matter and have a full range of plant nutrients, necessary for
sustaining plant growth. The biosolids also reduce the presence
of lead and nickel that are harmful for plant growth1.

Two types of tolerant plant species were carefully identified
for the study2. These two plant species were laurel-leaf willow
(scientifically known as Salix Pentandra) and poplar (Populus
deltoides x nigra, DN34). They were both grown separately
for a period of three months in both the tailing soil and the
tailing soil treated with biosolids. Tailings were air dried and
crumpled to pass through a 2 mm sieve. Tailings were placed
into 2 liter pots (1350g per pot). To improve the soil nutrition,
biosolids were added at a rate equivalent to 40 dry ton/acre
and mixed thoroughly with the tailings. Pots were prepared in
triplicates for each treatment resulting in a total of 12 pots. The
plant cuttings were planted in triplicate in each pot resulting
in a total of 18 cuttings for each plant species. Images were
taken at 3 months growth period.

The image data for our experiments contains leaf samples
from both plants grown in both soils in the greenhouse. A
Samsung GALAXY S4 smartphone was used for capturing
images collected in regular daylight. A total of 34 images of
leaves were collected from the smartphone spread across both
plants grown in both soils. The phone has following camera
configuration, shown in Table I.

1Please refer to Appendix for a list of important minerals present in the
original tailing soil, and biosolids used in the study.

2Tolerance is a term that ecologists use to indicate a tree’s capacity to
develop and grow in the shade of, and in competition with, other trees.

Algorithm 1 Algorithm for pre-processing and feature selec-
tion of image data
Pre-processing steps :

Resizing Raw input images taken from smartphone: IM,N
i

Re-sized image: Im,n
i where M and N are the pixels in

x and y direction for the image before re-sizing. m and n after
resizing. M > m and N > n
Filtering Input: Im,n

i +δm,n
i

Output: Im,n
i

Im,n
i depicts image with minimal amount of noise and δm,n

i

represent noise associated with image i
Segmentation Input: Im,n

i

Output: Segmented Image
Feature selection Input: Pre-processed images ~I = {~Im,n

i }
Output: Features selection f1, f2...., fn where n is the total

number of relevant features
~Bi = FeatureSelection(~Im,n

i ) ∀i ∈ (1, N) where N is the
total number of images;

~Bi = f1, f2...., fn

TABLE I: Camera specification of Samsung GALAXY Smart-
phone used for experiments

Camera Specification Value
Sensor Resolution 13 pixels
Focus Adjustment automatic
Special Effects HDR
Camera Light Source flash

IV. OUR APPROACH

Our approach is divided into two parts:

• Image preprocessing which includes filtering, segmen-
tation and feature selection

• Image analysis consisting of a classification algorithm
based on random forests

The whole process flow of our algorithm is shown in Figure 1
Preprocessing and feature selection is part of our Algorithm 1
and Algorithm 2 is used for image analysis.

Preprocessing helps in removing noise in the image using
filter like mean, median. Segmentation helps in reducing the
number of pixels to be analyzed. In analysis part, we used cross
validation technique to first train our classifier using training
images and then we test our model on 19 testing images.

A. Challenges

First, we present some challenges that need to be overcome.
Recall that experimental image data is used for identify leaf
stress in our problem. One of the key challenges in detecting
deficient leaves was building training model. A large dataset
for training results in overfitting problem and small dataset
creates the problem of underfitting. Thorough analysis was
done to decide on the optimal number of training image. We
tested our trained model of random forests on 19 images with
14 images of leaves from tailing soil and 5 from biosolid
treated tailing soil.
Amount of data: One of the main challenges in most of the
image processing problem is the amount of data. Image is very



Fig. 1:

Process flow: White portion represents deficient part of leaf and black portion represents non-deficient part of leaves

large in size and to train the classifier on enormous amount
of data is very hard. To train the model for each pixel on all
training images takes a lot of time. To resolve this problem, we
did ten fold size reduction for all the images from 4182×2322
pixels to 413×233 pixels. To further simplify the curse of large
dataset for testing image, we employed segmentation to reduce
the area of interest which in our case is leaves. We will discuss
about the segmentation in the subsequent subsection.
Labelled data: In case of supervised learning, labelled data is
required to train the classifier. There is no dataset available
which contains image data with labeled data for nutrient
deficiency. All the data used in our study was hand labelled
under the supervision of experts from environmental sciences
and converted into equivalent binary image. Binary image
contains only two colors white and black which depicts two
classes i.e healthy and unhealthy part of leaves. During cross
validation, we checked the predicted results with the ground
truth on pixel level to get accuracy matrix.

B. Noise removal using smoothing

Random variation in brightness or color information is
known as noise. Accuracy of the result affects severely form
the noise. Noise is not present in the actual object which is
pictured. It is mainly occurs because of photo sensor which
in our case is smart-phone camera. Noise sometimes occurs
due to improper lighting also. Low pass filtering (also known
as smoothing), is employed to remove high spatial frequency
noise from a digital image.

Three filters are used in the following order for noise
removal from the image.

1) Sharpening filter: Sharpening filter helps in enhancing
line structures and other details in an image. In addition to
original image, enhanced version of image contains scaled
version of the line structures and edges in the image. Line
structures and edges can be obtained by applying a difference
operator which is a high pass filter on image. Combined
operation is still a weighted averaging operation, but some
weights can be negative, and the sum=1.

2) Mean filter: Mean filter helps in denoising the image
by taking the mean of the sliding window of n∗n size. In our
approach, we took window of size 3 ∗ 3 because it helps in
smoothing the pixel with respect to its neighboring pixels.

3) Median filter: Median filtering is nonlinear filtering
technique to remove noise. One of main characteristic of

Fig. 2: a) Original image b) Image after applying sharpening,
mean and median filters

median filter is that it preserves edges while removing noise
which helps during segmentation. It takes the median value
instead of the average or weighted average value of pixels in
the window. Median filter sort all the pixels in an increasing
order, and then it takes the middle value. The output before
and after applying filtering techniques is shown in Figure 2

C. Image segmentation

The purpose of image segmentation is to divide the image
in several parts with group of pixels. The goal of image
segmentation is to simply and alter representation of an image.
It also make image more meaningful and easy to analyze.
The main purpose of using image segmentation is to find
meaningful area which in our case is leaves. Our study is
concerned with leaf texture, not the area outside the leaf. It
help in reducing the area which we have to analyze. Regions
of interest(ROI) is defined as groups of pixels having border
and a particular shape such as a circle, ellipse or polygon.
ROI in our study is leaf surface. In most of digital image
processing pipelines, segmentation is most tricky and crucial
step for image analysis. It is used mainly because of two
purposes- First is to decompose the image into small part
for analysis. Segmentation is very reliable if there is clear
visual distinction between area of interest and the redundant
area. Median filter also help to our cause by sharpening the
boundary. We discarded the pixels which doesn’t belongs to
leaves. Secondly, segmentation presents a new representation
of image. This help in organizing pixels in higher level units
i.e. segments in a way that it will be more meaningful and
efficient for further analysis.



Fig. 3: a) Original leaf image b. Image after applying segmen-
tation where non-leaf pixels are removed

Identifying ROI in image depends on the uniformity and
homogeneity of texture and color. Image should be clear
enough to detect the similar region. Identification also depend
on the different characteristics of adjacent regions of segmen-
tation with respect to the region of interest. It is very difficult
to achieve all desired properties of segmentation. Uniform and
homogeneous region is full of holes and broken boundaries
but our segmentation techniques take cares of these problems.

In our study, we used Canny edge detection and Sobel
techniques for segmentation because they are very efficient in
detecting boundary compare to other techniques. Canny edge
detector get boundary segment of an intensity image. Canny
operator is one of most popular edge detector. We had used σ
of 0.75 for Canny operator. σ is the standard deviation of the
Gaussian filter.

1) Gaussian filter: Guassian filtering is used to blur images
and remove noise. Image is two dimensional. The gaussian
function for two dimension is:

Hij =
1

2πσ2
e−((i−k−1)

2+(j−k−1)2)/2σ2

2) Intensity Gradient of the Image: Canny algorithm uses
four filters to detect horizontal, vertical and diagonal edges in
the blurred image. Roberts Sobel et al edge detection operator
returns a value for the first derivative in the horizontal direction
Gx and the vertical direction Gy .

G =
√
G2
x +G2

y

θ = atan2(Gy, Gx)

where G can be computed using the hypot function and
atan2 is the arctangent function with two arguments.

3) Sobel operator: Uses two 33 kernels which are con-
volved with the original image to calculate approximations of
the derivative. One for horizontal changes, and one for vertical.
A is source image and Gx and Gy are two images which

at each point contain the horizontal and vertical derivative
approximations

Gy =

[−1 −2 −1
0 0 0
+1 +2 +1

]
∗A (1)

and

Gx =

[−1 0 +1
−2 0 +2
−1 0 +1

]
∗A (2)

Comparison between leaf before segmentation and after
segmentation is shown in Figure 3

D. Feature selection

As the world grows in complexity, overwhelming us with
the data it generates, machine learning techniques becomes
the only hope for elucidating the patterns that underlie it [21].
Manual processing of data becomes tedious as size of data
grows and number of dimensions increases, so the process of
data analysis need to be automated using machine learning.
Feature selections plays an important role in dealing with
large datasets like image data. When dealing with large digital
images dataset, the computational time is increased. High
collinearity and presence of noise in color bands can degrade
the quality of the model. Feature selection and extraction
are central issues in these situations because of the curse
of dimensionality [22]. The objective of feature selection is
three fold. Providing faster and more cost effective prediction,
improving the prediction performance of the predictors and
providing better understanding of the underlying process that
generate the data. In our proposed model, we are detecting
deficiency in leaves using visual characteristics. Therefore
selecting right color channel or combination of color channels
is very important from accuracy point of view. Some of the
available color channels are RGB, HSV, YCbCr etc. The range
of value for each channel pixel in case of RGB and YCbCr
is 256. Range for each attribute of Hue, Saturation and value
in HSV is between 0 and 1. One of the limitation of using
HSV is the range of value which is very limited and decrease
the accuracy of classification technique. We used various set
of feature combination and calculated accuracy as given in
Table II.

TABLE II: Comparison of various combination of color chan-
nels

Combination Precision Recall Accuracy F1-Score
RGB 0.9539 0.8976 0.9377 0.9249
R 0.9364 0.5616 0.7963 0.7021
G 0.9408 0.5786 0.8044 0.7166
B 0 0 0.5726 0
YCbCr 0 0 0.5726 0
HSV 0 0 0.5726 0

E. Classification method

One of the most crucial step of any supervised learning
based solution is the classification method. We approached
detecting deficiency as binary classification problem in which
we have two classes: Healthy class and deficient class. During
our study, we evaluated many supervised learning techniques



like Random Forests, Support Vector classification and K-
Nearest Neighbor and come with Random Forests as best
classification technique based on training time and prediction
time. We are predicting our outcome based on pixel features
of RGB color channel. We designed our algorithm based on
random forests as shown in Algorithm 2

Algorithm 2 Algorithm for Random Forests based classifica-
tion for plant stress detection
Level 1 Training:
Input: Training image data set ~Bi
Output: Ensemble of trees {Tb}B1

1) Select a bootstrap sample Z∗ of size N from the
training data.

2) Grow a decision tree Tb to the bootstrapped image
data by recursively repeating following steps for each
terminal node, until minimum node size nmin is
achieved.

a) Select m attributes at random from the n
variables.

b) Choose the best attribute/split-point among
the m.

c) Split the node into two daughter nodes.
Level 2 Testing:
Input: Segmented test image data set ~Ti
Output: Pixelated testing leaves with white represents un-
healthy and black represents healthy leaf pixel
Classification: If Ĉb(x) be the class prediction of the bth

decision tree. Then ĈBrf (x) = majority vote {Ĉb(x)}B1
~Si(Ti) =

{
1, if TiεCD
0, otherwise

∀i ∈ (1, N)

Random Forests(RF) is an ensemble supervised machine
learning technique. Random forests uses decision tree as base
classifier [12]. Random forests consists of set of decision trees;
h(x, θi)i = 1, 2, ..., where the θi are independent identically
distributed random vectors and each decision tree contribute a
unit vote for the most popular class at input x. Each single tree
in RF contains N number of records in the training set which
is sampled at random but with replacement, from the original
data, this is bootstrap sample. If there are M input features,
a m << M is selected as attributes at each node. The best
split on these m attribute is used to split the node. RF uses
information gain IG(T, a) to decide splits. T denote a set of
training sample for a single tree. ((x),y) = (x1,x2, ...,xk,y)
where (x) consist is single set of record and y is the class label.
The information gain for an attribute a is as follow:

IG(T, a) = H(T )−
∑

v∈val(a)

{ |{x ∈ T|xa = v}|
|T |

H({x ∈ T|xa = v})}

Here xa ∈ vals(a) is the value of the ath attribute of example
x The randomization is present in two ways: (1) random
selection of data for bootstrap samples as it is done in bagging
(2) random selection of input features for creating individual
base decision trees. Robustness of individual decision tree
classifier and correlation among base decision trees decides
generalization error of RF classifier. Random forests works
efficiently on large dataset like image dataset [12]. Ensemble

technique is often more accurate than any of the single classi-
fier in ensemble [23][13][14]. Multiple trees are induced in the
forests. In our approach, nTree is set to 100 which is the total
number of decision trees. Random forests do the bagging for
of decision trees but we can ensemble other classifier also like
neural networks. Random forests use bagging for averaging

the output of each decision tree p(c|v) =

∑T
t=1 pt(c|v)

T
The

process of combining votes from all trees and selecting class
with maximum votes is referred as Forest RI in the literature
[12] Optimal forest size gives smoother separation and better
decision boundaries. Number of output classes doesn’t affect
the classification accuracy. In decision trees, shallow tree
results in problem of underfitting and deep tree increase the
chances of overfitting. RF uses Bayesian optimization to get
optimal choices for all parameters. The Generalization error
(GE∗) of Random Forest is given as, [14]

GE∗ = Px,y(mar(X,Y )) < 0

Where mar(X,Y ) is Margin function. The margin function
calculates the extent to which the average number of votes at
(X,Y) for the correct class exceeds the average vote for any
other class [24]. Here X is the predictor vector and Y is the
class value.
The margin function is given as,

mar(X,Y ) = avgkI(hK(X) = Y )

−maxj 6=Y avkI(hK(X) = j)

Here I() is indicator function. Expected value of margin
functions is used to represent strength of random forest as,

S = Ex,y(mar(X,Y ))

In the classification problem, margin is directly proportional
to confidence. The upper bound of generalization error of
ensemble classifier is represented by a function of mean
correlation between base classifier and their average strength
which is (S) [24]. If ρ is average value of correlation. Then
upper bound for generalization error is given by:

GE∗ ≤ ρ(1− s2)
s2

Our random forests based trained learning algorithm is stored
in smart-phone. Everytime we take an image from the smart-
phone using our application, image is feed to the algorithmic
technique which in return provides the healthiness of the leaf.
This will save testing time and helps in getting the output very
fast.

V. RESULTS

Cross validation was used for validating our approach to
determine whether or not the pixels were attempted to classify
in each leaf was healthy or not. Precision, recall, accuracy and
F1 score were used as accuracy measure, which are standard
metrics to assess performance of classification algorithms. In
Figure 4, we compared original testing image, ground truth
image and the predicted result from Random Forests classifier.
Our predicted results achieved an aggregated precision of 91%,
recall of almost 75%, accuracy of 91% and F1-Score of 82%
for all the images with standard deviation of 04.39%, 12.86%,



Fig. 4:

Random Forest classifier result: a. Actual image b. Black-white ground truth c. Our algorithm prediction results

TABLE III: Accuracy Matrix of Random Forests based Algo-
rithm

Precision Recall Accuracy F-1 Score

Mean 91.288% 74.82% 91.24% 81.52%

Standard Deviation 04.39% 12.86% 05.38% 08.11%

05.38% and 08.11% respectively on sample of 19 testing
leaves, as shown in Table III.

Subsequently, we evaluated the soil treatment on plant
stress using our approach, as a notion of overall stress of
the plant. After training our random forests based algorithm,
we ran the algorithm on plants which were grown on tailing
soil which was nutrition deficient. The same model was also
applied on biosolid treated soil which contains more minerals
and supported healthier plant growth. We ran our model on 5
images from biosolids amended tailings and 14 images from
tailing soil plant leaves. We expressed the healthiness of plant
in following terms:

H(Li) =

∑M
j=1 I(L

j
i ∈ CND) ∗ 100∑M

j=1 I(L
j
i ∈ CND) +

∑M
j=1 I(L

j
i ∈ CD)

Where CND is class of healthy pixels and CD is class of
deficient pixels. M is the total number of pixels in leaf Li. L

j
i

denotes jth pixel of leaf i.

Our feature set consists of RGB tuple. We discarded those
pixels which does not belongs to leaves using segmentation
technique during testing. Each pixel of the leaf is processed
to check whether it belongs to deficient class or healthy
class. Therefore the above equation gives us healthiness of the
leaf. We evaluated the healthiness of leaves for both tailing
and biosolid treated soil. Our results shown that there was
a significant improvement in plant stress when treated with
biosolids. These results are consistent with biosolids treated
plants, as indicated by domain experts. Results are shown in
Figure 5.

VI. DISCUSSION

We evaluated our system on 34 leaves. Out of which 15
leaves were used for training and 19 for testing. As part
of future work, we are planning to evaluate our system on

Fig. 5:

Comparison of plant leaf healthiness for tailing and biosolid
treated soil

large data set with different lighting settings like cloudy,
foggy and daylight conditions. In our current setting, we
used daylight condition of greenhouse. The beauty of our
algorithms embedded in our classification techniques. Random
forests take very less time in processing and evaluating the
data set. Currently we evaluated our system on machine with
following configuration Intel Core i7 CPU@2.6 GHz with 16
GB RAM. Training time of our random forest based model
with nTree=100 is 46.38 seconds. For each leaf, our RF based
model takes 1.1 seconds for prediction with 83.2% accuracy.



Our Smart-phone app with trained model of random forest can
evaluate the image taken from cameras with every less energy
and computation.

VII. CONCLUSION

In this paper, we demonstrate the feasibility of smart-phone
cameras being used to assess stress of plants. Our methods
included image filtering to remove noise, and segmentation to
further improve scalability and accuracy. Our algorithm based
on random forests achieved good performance in classifying
the healthy vs. unhealthy portions of the plant we studied
in both soils. Our future work is to generalize the above
experiments to consider more plants and soils, evaluating the
applications of work to urban farms, and also design smart-
phone apps to further outreach our contributions to the society.
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VIII. APPENDIX

In Table IV, we present a complete list of important
chemical components of soils used in our study. Note that the
presence of Lead (Pb) and Nickel (Ni) are actually harmful
for our plants, and as such their decreased presence enables
healthier plants and less plant stress. Some of the entries
are Not Determined (ND) which are in process of chemical
analysis. More chemical analysis is currently being done to
determine a complete list of all chemicals, and their quantities
present in both soils.

TABLE IV: Complete list of important chemical components
of soils used in our study

Component Tailing Soil biosolids
pH 7.6 ND
CEC (meq/100g) 3.6 ND
Organic Matter(%) 0.1 56.3
Total Kjeldahl nitrogen(mg/kg) ND 66500
Nitrate(mg/kg) ND 69.1
Bray I P(mg/kg) 16.5 ND
Total P(mg/kg) ND 14200
Ca (mg/kg) 473.5 ND
Mg (mg/kg) 136.5 ND
K (mg/kg) 24 3140
Cu (mg/kg) 0.999 522
Zn (mg/kg) ND 735
Mo (mg/kg) 2.536 ND
Cr (mg/kg) 11.49 24.6
Cd (mg/kg) 13.67 ND
Pb (mg/kg) 3553 31.5
Ni (mg/kg) 70.67 22.4
Co (mg/L) 39.25 ND


