
Microelectronics Reliability xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier .com/locate /microrel
Maximum error modeling for fault-tolerant computation using maximum
a posteriori (MAP) hypothesis

Karthikeyan Lingasubramanian a,*, Syed M. Alam b, Sanjukta Bhanja a

a Nano Computing Research Group (NCRG), Department of Electrical Engineering, University of South Florida, Tampa, Florida, USA
b EverSpin Technologies, Austin, Texas, USA

a r t i c l e i n f o
Article history:
Received 6 November 2009
Received in revised form 15 July 2010
Accepted 21 July 2010
Available online xxxx
0026-2714/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.microrel.2010.07.156

* Corresponding author.
E-mail address: klingasu@mail.usf.edu (K. Lingasu

Please cite this article in press as: Lingasubrama
hypothesis. Microelectron Reliab (2010), doi:10
a b s t r a c t

The application of current generation computing machines in safety-centric applications like implantable
biomedical chips and automobile safety has immensely increased the need for reviewing the worst-case
error behavior of computing devices for fault-tolerant computation. In this work, we propose an exact
probabilistic error model that can compute the maximum error over all possible input space in a cir-
cuit-specific manner and can handle various types of structural dependencies in the circuit. We also pro-
vide the worst-case input vector, which has the highest probability to generate an erroneous output, for
any given logic circuit. We also present a study of circuit-specific error bounds for fault-tolerant compu-
tation in heterogeneous circuits using the maximum error computed for each circuit. We model the error
estimation problem as a maximum a posteriori (MAP) estimate [28,29], over the joint error probability
function of the entire circuit, calculated efficiently through an intelligent search of the entire input space
using probabilistic traversal of a binary Join tree using Shenoy–Shafer algorithm [20,21]. We demonstrate
this model using MCNC and ISCAS benchmark circuits and validate it using an equivalent HSpice model.
Both results yield the same worst-case input vectors and the highest percentage difference of our error
model over HSpice is just 1.23%. We observe that the maximum error probabilities are significantly larger
than the average error probabilities, and provides a much tighter error bounds for fault-tolerant compu-
tation. We also find that the error estimates depend on the specific circuit structure and the maximum
error probabilities are sensitive to the individual gate failure probabilities.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Why maximum error? Industries like automotive and health care,
which employs safety-centric electronic devices, have traditionally ad-
dressed high reliability requirements by employing redundancy, error
corrections, and choice of proper assembly and packaging technology.
In addition, rigorous product testing at extended stress conditions fil-
ters out even an entire lot in the presence of a small number of failures
[38]. Another rapidly growing class of electronic chips where reliability
is very critical is implantable biomedical chips [40,41]. More interest-
ingly, some of the safety approaches, such as redundancy and complex
packaging, are not readily applicable to implantable biomedical appli-
cations because of low voltage, low power operation and small form
factor requirements. Also in future technologies like NW-FET, CNT-
FET [43], RTD [45], hybrid nano devices [15], single electron tunneling
devices [16], field coupled computing devices like QCA’s [44] (molecu-
lar and magnetic) and spin-coupled computing devices, computing
components are likely to have higher error rates (both in terms of de-
fect and transient faults) since they operate near the thermal limit and
information processing occurs at extremely small volume. Nano-
ll rights reserved.

bramanian).

nian K et al. Maximum error m
.1016/j.microrel.2010.07.156
CMOS, beyond 22 nm, is not an exception in this regard as the fre-
quency scales up and voltage and geometry scales down. Also we have
to note that, while two design implementation choices can have differ-
ent average probabilities of failures, the lower average choice may in
fact have higher maximum probability of failure leading to lower yield
in manufacturing and more rejects during chip burn-in and extended
screening.
1.1. Proposed work

In this work, we present a probabilistic model to study the max-
imum output error over all possible input space for a given logic
circuit. We present a method to find out the worst-case input vec-
tor, i.e., the input vector that has the highest probability to give an
error at the output. In the first step of our model, we convert the
circuit into a corresponding edge-minimal probabilistic network
that represents the basic logic function of the circuit by handling
the interdependencies between the signals using random variables
of interest in a composite joint probability distribution function
P(y1,y2, . . . ,yN). Each node in this network corresponds to a random
variable representing a signal in the digital circuit, and each edge
corresponds to the logic governing the connected signals. The indi-
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156
mailto:klingasu@mail.usf.edu
http://dx.doi.org/10.1016/j.microrel.2010.07.156
http://www.sciencedirect.com/science/journal/00262714
http://www.elsevier.com/locate/microrel
http://dx.doi.org/10.1016/j.microrel.2010.07.156

1 Note that this does not mean 1 out of 100 devices will fail, it indicates the devices
will generate erroneous output 1 out of 100 times.

2 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
vidual probability distribution for each node is given using condi-
tional probability tables.

From this probabilistic network we obtain our probabilistic error
model that consists of three blocks, (i) ideal error free logic, (ii) error
prone logic where every gate has a gate error probability e i.e., each
gate can go wrong individually by a probabilistic factor e and (iii) a
detection unit that uses comparators to compare the error free and
erroneous outputs. The error prone logic represents the real time
circuit under test, whereas the ideal logic and the detection unit
are fictitious elements used to study the circuit. Both the ideal logic
and error prone logic would be fed by the primary inputs I. We de-
note all the internal nodes, both in the error free and erroneous por-
tions, by X and the comparator outputs as O. The comparators are
based on XOR logic and hence a state ‘‘1” would signify error at
the output. An evidence set o is created by evidencing one or more
of the variables in the comparator set O to state ‘‘1” (P(Oi = 1) = 1).
Then performing maximum a posteriori (MAP) hypothesis on the
probabilistic error model provides the worst-case input vector iMAP

which gives the maximum joint probability P(iMAP,o) over all possi-
ble input combinations i, max"iP(i,o). The maximum output error
probability can be obtained from P(Oi = 1) after instantiating the in-
put nodes of probabilistic error model with iMAP and inferencing.
The process is repeated for increasing e values and finally the e va-
lue that makes at least one of the output signals completely random
(P(Oi = 0) = 0.5,P(Oi = 1) = 0.5) is taken as the error bound for the gi-
ven circuit.

It is obvious that we can arrive at MAP estimate by enumerating
all possible input instantiations and compute the maximum P(i,o)
by any probabilistic computing tool. The attractive feature of the
MAP algorithm that we have adapted from [28,29] for digital cir-
cuits, lies on eliminating a significant part of the input search-sub-
tree based on an easily available upper-bound of P(i,o) by using
probabilistic traversal of a binary Join tree with Shenoy–Shafer
algorithm [20,21,27]. The actual computation is divided into two
theoretical components. First, we convert the circuit structure into
a binary Join tree and employ Shenoy–Shafer algorithm, which is a
two-pass probabilistic message-passing algorithm, to obtain multi-
tude of upper bounds of P(i,o) with partial input instantiations.
Next, we construct a Binary tree of the input vector space where
each path from the root node to the leaf node represents an input
vector. At every node, we traverse the search tree if the upper
bound, obtained by Shenoy–Shafer inference on the binary Join
tree, is greater than the maximum probability already achieved;
otherwise we prune the entire sub-tree. Experimental results on
a few standard benchmark show that the worst-case errors signif-
icantly deviate from the average ones and also provides tighter
bounds for the ones that use homogeneous gate-type (c17 with
NAND-only).

Salient features and deliverables are itemized below:

� We have proposed a method to calculate maximum output error
using a probabilistic model. Through experimental results, we
show the importance of modeling maximum output error
(Fig. 11).
� Given a circuit with a fixed gate error probability e, our model

can provide the maximum output error probability and the
worst-case input vector, which can be very useful testing
parameters.
� We present the circuit-specific error bounds for fault-tolerant

computation and we show that maximum output errors provide
a tighter bound.
� We have adapted an efficient design framework for digital cir-

cuits, that employs inference in binary Join trees using She-
noy–Shafer algorithm [20,21] to perform MAP hypothesis
[28,29] accurately, in order to calculate maximum output
error.
Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
� We give a probabilistic error model, where efficient error incor-
poration is possible, for useful reliability studies. Using our
model the error injection and probability of error for each gate
can be modified easily. Moreover, we can accommodate both
fixed and variable gate errors in a single circuit without affect-
ing computational complexity.

The rest of the paper is structured as follows: Section 2 gives a
summary of some of the previous works on error bounds for fault-
tolerant computation along with some of the reliability models
established from these works, Section 3 explains the structure of
our probabilistic error model, Section 4 explains the MAP hypoth-
esis and its complexity, Section 5 provides the experimental re-
sults, followed by conclusion in Section 6.
2. Prior work

2.1. State-of-the-art

The study of reliable computation using unreliable components
was initiated by von Neumann [1] who showed that erroneous
components with some small error probability can provide reliable
outputs and this is possible only when the error probability of each
component is less than 1/6. This work was later enhanced by Pipp-
enger [2] who realized von Neumann’s model using formulas for
Boolean functions. This work showed that for a function controlled
by k-arguments the error probability of each component should be
less than (k � 1)/2k to achieve reliable computation. This work was
later extended by using networks instead of formulas to realize the
reliability model [3]. In [4], Hajek and Weller used the concept of
formulas to show that for three-input gates the error probability
should be less than 1/6. Later this work was extended for k-input
gates [5] where k was chosen to be odd. For a specific even case,
Evans and Pippenger [6] showed that the maximum tolerable noise
level for two-input NAND gate should be less than
ð3�

ffiffiffi
7
p
Þ=4 ¼ 0:08856 Later this result was reiterated by Gao

et al. for two-input NAND gate, along with other results for k-input
NAND gate and majority gate, using bifurcation analysis [7] that in-
volves repeated iterations on a function relating to the specific com-
putational component. While there exists studies of circuit-specific
bounds for circuit characteristics like switching activity [8], the
study of circuit-specific error bounds would be highly informative
and useful for designing high-end computing machines.

The study of fault-tolerant computation has expanded its barri-
ers and is being generously employed in fields like nano-comput-
ing architectures. Reliability models like Triple Modular
Redundancy (TMR) and N-Modular Redundancy (NMR) [9] were
designed using the von Neumann model. Expansion of these tech-
niques led to models like Cascaded Triple Modular Redundancy
(CTMR) [10] used for nanochip devices. In [11], the reliability of
reconfigurable architectures was obtained using NAND multiplex-
ing technique and in [12], majority multiplexing was used to
achieve fault-tolerant designs for nanoarchitectures. A recent com-
parative study of these methods [13], indicates that a 1000-fold
redundancy would be required for a device error (or failure) rate
of 0.011. Many researchers are currently focusing on computing
the average error [18,19] from a circuit and also on the expected er-
ror to conduct reliability–redundancy trade-off studies. An approxi-
mate method based on Probabilistic Gate Model (PGM) is discussed
by Han et al. in [14]. Here the PGMs are formed using equations gov-
erning the functionality between an input and an output. Probabilis-
tic analysis of digital logic circuits using decision diagrams is
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 3
proposed in [17]. In [26], the average output error in digital circuits
is calculated using a probabilistic reliability model that employs
Bayesian Networks.

In testing, the identification of possible input patterns to per-
form efficient circuit testing is achieved through Automatic Test
Pattern Generation (ATPG) algorithms. Some of the commonly
used ATPG algorithms like D-algorithm [31], path-oriented deci-
sion making (PODEM) algorithm [32] and fanout-oriented test gen-
eration (FAN) algorithm [33] are deterministic in nature. There are
some partially probabilistic ATPG algorithms [34–36] which are
basically used to reduce the input pattern search space. In order
to handle transient errors occurring in intermediate gates of a cir-
cuit, we need a completely probabilistic model [37].
2.2. Relation to State-of-the-art

Our work concentrates on estimation of maximum error as op-
posed to average error, since for higher design levels it is important
to account for maximum error behavior, especially if this behavior
is far worse than the average case behavior.

Also our work proposes a completely probabilistic model as op-
posed to a deterministic model, where every gate of the circuit is
modeled probabilistically and the worst case input pattern is
obtained.

The bounds presented in all the above mentioned works do not
consider (i) combination of different logic units like NAND and
majority in deriving the bounds and (ii) do not consider circuit
structure and dependencies and error masking that could occur
in a realistic logic network, making the bounds pessimistic. Our
model encapsulates the entire circuit structure along with the signal
inter dependencies and so is capable of estimating the error bound
of the entire circuit as opposed to a single logic unit.
Table 1
Conditional Probability Tables (CPTs) for error-free and error-prone AND logic present
in the probabilistic error model given in Fig. 1.

Error-free AND

P(X1 = 1jI1, I2) P(I2 = 0) = 1 P(I2 = 1) = 1
P(I1 = 0) = 1 0 0
P(I1 = 1) = 1 0 1

Error-prone AND

P(X4 = 1jI1,I2) P(I2 = 0) = 1 P(I2 = 1) = 1
P(I1 = 0) = 1 e e
P(I1 = 1) = 1 e 1 � e
3. Probabilistic error model

The underlying model compares error-free and error-prone out-
puts. Our model contains three sections, (i) error-free logic where
the gates are assumed to be perfect, (ii) error-prone logic where
each gate goes wrong independently by an error probability e
and (iii) XOR-logic based comparators that compare the error-free
and error-prone primary outputs. When error occurs, the error-
prone primary output signal will not be at the same state as the
ideal error-free primary output signal. So, an output of logic ‘‘1” at
(a) (b)

Fig. 1. (a) Digital logic circuit, (b) error mo

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
the XOR comparator gate indicates occurrence of error. For a given
digital logic circuit as in Fig. 1a, the error model and the corre-
sponding probabilistic error model are illustrated in Fig. 1b and c
respectively. In Fig. 1b and c, block 1 is the error-free logic, block
2 is the error-prone logic with gate error probability e and block
3 is the comparator logic. In the entire model, the error-prone por-
tion given in block 2 is the one that represents the real-time circuit.
The ideal error-free portion in block 1 and the comparator portion
in block 3 are fictitious and used for studying the given circuit.

We would like the readers to note that we will be representing a
SET OF VARIABLES by bold capital letters, set of instantiations by
bold small letters, any SINGLE VARIABLE by capital letters. Also
probability of the event Yi = yi will be denoted simply by P(yi) or
by P(Yi = yi).

The probabilistic network is a conditional factoring of a joint
probability distribution. The nodes in the network are random
variables representing each signal in the underlying circuit. To per-
fectly represent digital signals each random variable will have two
states, state ‘‘0” and state ‘‘1”. The edges represent the logic that
governs the connecting nodes using conditional probability tables
(CPTs). For example, in Fig. 1c, the nodes X1 and X4 are random
variables representing the error-free signal X1 and the error-prone
signal X4 respectively of the digital circuit given in Fig. 1a. The
edges connecting these nodes to their parents I1 and I2 represent
the error-free AND logic and error-prone AND logic as given by
the CPTs in Table 1.

Let us define the random variables in our probabilistic error
model as Y = I [X [O, composed of the three disjoint subsets I,
X and O where

1. I1, . . . , Ik 2 I are the set of k primary inputs.
(c)

del, and (c) probabilistic error model.

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

4 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
2. X1, . . . ,Xm 2 X are the m internal logic signals for both the erro-
neous (every gate has a failure probability e) and error-free
ideal logic elements.

3. O1, . . . ,On 2 O are the n comparator outputs, each one signifying
the error in one of the primary outputs of the logic block.

4. N = k + m + n is the total number of network random variables.

Any probability function P(y1,y2, . . . ,yN), where y1,y2, . . . ,yN are
random variables, can be written as,

Pðy1; . . . ; yNÞ
¼ PðyN jyN�1; yN�2; . . . ; y1ÞPðyN�1jyN�2; yN�3; . . . ; y1Þ � � � Pðy1Þ ð1Þ

This expression holds for any ordering of the random variables.
In most applications, a variable is usually not dependent on all
other variables. There are lots of conditional independencies
embedded among the random variables, which can be used to reor-
der the random variables and to simplify the joint probability as,

Pðy1; . . . ; yNÞ ¼
Y
v

Pðyv jPaðYvÞÞ ð2Þ

where Pa(Yv) indicates the parents of the variable Yv, representing
its direct causes. This factoring of the joint probability function
can be denoted as a graph with links directed from the random var-
iable representing the inputs of a gate to the random variable rep-
resenting the output. To understand it better let us look at the error
model given in Fig. 1c. The joint probability distribution represent-
ing the network can be written as,

Pði1; i2; i3;x1; . . . ;x6;o1Þ
¼ Pðo1jx6; . . . ;x1; i3; i2; i1ÞPðx6jx5; . . . ;x1; i3; i2; i1Þ � � �Pði3ÞPði2ÞPði1Þ

ð3Þ

Here the random variable O1 is independent of the random vari-
ables X1, X2, X4, X5, I1, I2, I3 given its parents X3, X6. This notion
explains the conditional independence between the random vari-
ables in the network and it is mathematically denoted by
I(O1,{X3,X6},{X1,X2,X4,X5, I1, I2, I3}). So for O1, the probability dis-
tribution can be rephrased as,

Pðo1jx6; . . . ; x1; i3; i2; i1Þ ¼ Pðo1jx6; x3Þ ð4Þ

By implementing all the underlying conditional independencies
the basic joint probability distribution can be rephrased as,

Pði1; i2; i3; x1; . . . ; x6; o1Þ
¼ Pðo1jx6; x3ÞPðx6jx5; x4ÞPðx5ji3; i2ÞPðx4ji2; i1ÞPðx3jx2; x1Þ

Pðx2ji3; i2ÞPðx1ji2; i1ÞPði3ÞPði2ÞPði1Þ ð5Þ

The implementation of this probability distribution can be
clearly seen in Fig. 1c. Each node is connected only to its parents
and not to any other nodes. The conditional probability potentials
for all the nodes are provided by the CPTs. The attractive feature of
this graphical representation of the joint probability distribution is
that not only does it make conditional dependency relationships
among the nodes explicit but it also serve as a computational
mechanism for efficient probabilistic updating.

4. Maximum a posteriori (MAP) estimate

As we mentioned earlier, in our probabilistic error model, the
network variables, say Y, can be divided into three subsets I, X
and O where I1, . . . , Ik 2 I represents primary input signals;
X1, . . . ,Xm 2 X represents internal signals including the primary
output signals; O1, . . . ,On 2 O represents the comparator output
signals. Any primary output node can be forced to be erroneous by fix-
ing the corresponding comparator output to logic ‘‘1”, that is provid-
ing an evidence o = {P(Oi = 1) = 1} to a comparator output Oi. Given
Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
some evidence o, the objective of the maximum a posteriori esti-
mate is to find a complete instantiation iMAP of the variables in I
that gives the following joint probability,

MAPðiMAP;oÞ ¼max
8i

Pði;oÞ ð6Þ

The probability MAP(iMAP,o) is termed as the MAP probability and
the variables in I are termed as MAP variables and the instantiation
iMAP which gives the maximum P(i,o) is termed as the MAP
instantiation.

For example, consider Fig. 1. In the probabilistic model shown
in Fig. 1c, we have {I1, I2, I3} 2 I; {X1,X2,X3,X4,X5,X6} 2 X;
{O1} 2 O. X3 is the ideal error-free primary output node and X6 is
the corresponding error-prone primary output node. Giving an evi-
dence o = {P(O1 = 1) = 1} to O1 indicates that X6 has produced an
erroneous output. The MAP hypothesis uses this information and
finds the input instantiation, iMAP, that would give the maximum
P(i,o). This indicates that iMAP is the most probable input instanti-
ation that would give an error in the error-prone primary output
signal X6. In this case, iMAP = {I1 = 0, I2 = 0, I3 = 0}. This means that
the input instantiation {I1 = 0, I2 = 0, I3 = 0} will most probably pro-
vide a wrong output, X6 = 1 (since the correct output is X6 = 0).

We arrive at the exact maximum a posteriori (MAP) estimate
using the algorithms by Park and Darwiche [28,29]. It is obvious
that we could arrive at MAP estimate by enumerating all possible
input instantiations and compute the maximum output error. To
make it more efficient, our MAP estimates rely on eliminating
some part of the input search-subtree based on an easily available
upper-bound of MAP probability by using a probabilistic traversal
of a binary Join tree using Shenoy–Shafer algorithm [20,21]. The ac-
tual computation is divided into two theoretical components.

� First, we convert the circuit structure into a binary Join tree and
employ Shenoy–Shafer algorithm, which is a two-pass probabi-
listic message-passing algorithm, to obtain multitude of upper
bounds of MAP probability with partial input instantiations
(discussed in Section 4.1). The reader familiar with Shenoy–Sha-
fer algorithm can skip the above mentioned section. To our
knowledge, Shenoy–Shafer algorithm is not commonly used in
VLSI context, so we elaborate most steps of Join tree creation,
two-pass Join tree traversal and computation of upper bounds
with partial input instantiations.
� Next, we construct a Binary tree of the input vector space where

each path from the root node to the leaf node represents an
input vector. At every node, we traverse the search tree if the
upper bound, obtained by Shenoy–Shafer inference on the bin-
ary Join tree, is greater than the maximum probability already
achieved; otherwise we prune the entire sub-tree. The depth-
first traversal in the binary input instantiation tree is discussed
in Section 4.2 where we detail the search process, pruning and
heuristics used for better pruning. Note that the pruning is key
to the significantly improved efficiency of the MAP estimates.

4.1. Calculation of MAP upper bounds using Shenoy–Shafer algorithm

To clearly understand the various MAP probabilities that are
calculated during MAP hypothesis, let us see the binary search tree
formed using the MAP variables. A complete search through the
MAP variables can be illustrated as shown in Fig. 2 which gives
the corresponding search tree for the probabilistic error model gi-
ven in Fig. 1c, which has three primary inputs or MAP variables. In
this search tree, the root node N will have an empty instantiation;
every intermediate node Niinter

Iinter
will be associated with a subset Iinter

of MAP variables I and the corresponding partial instantiation iinter;
and every leaf node Ni

I will be associated with the entire set I and
the corresponding complete instantiation i. Also each node will
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

Fig. 2. Corresponding binary search tree for the probabilistic error model given in Fig. 1, which has three primary inputs or MAP variables.

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 5
have v children where v is the number of values or states that can
be assigned to each variable Ii. Since we are dealing with digital sig-
nals, every node in the search tree will have two children. Since the
MAP variables represent the primary input signals of the given dig-
ital circuit, one path from the root to the leaf node of this search
tree gives one input vector choice. In Fig. 2, at node N01

fI1;I2g; Iinter

¼ fI1; I2g and iinter = {I1 = 0, I2 = 1}. The basic idea of the search pro-
cess is to find the MAP probability MAP(i,o) by finding the upper
bounds of the intermediate MAP probabilities MAP(iinter,o).

MAP hypothesis can be categorized into two portions. The first
portion involves finding intermediate upper bounds of MAP proba-
bility, MAP(iinter,o), and the second portion involves improving
these bounds to arrive at the exact MAP solution, MAP(iMAP,o).
These two portions are intertwined and performed alternatively
to effectively improve on the intermediate MAP upper bounds.
These upper bounds and final solution are calculated by perform-
ing inference on the probabilistic error model using Shenoy–Shafer
algorithm [20,21].

Shenoy–Shafer algorithm is based on local computation mecha-
nism. The probability distributions of the locally connected vari-
ables are propagated to get the joint probability distribution of
the entire network from which any individual or joint probability
distributions can be calculated. The Shenoy–shafer algorithm in-
volves the following crucial information and calculations.

4.1.1. Valuations
The valuations are functions based on the prior probabilities of

the variables in the network. A valuation for a variable Yi can be gi-
ven as /Yi

¼ PðYi; PaðYiÞÞwhere Pa(Yi) are the parents of Yi. For vari-
ables without parents, the valuations can be given as /Yi

¼ PðYiÞ.
These valuations can be derived from the CPTs (discussed in Sec-
tion 3) as shown in Table 2.
Table 2
Valuations of the variables derived from corresponding CPTs.

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
4.1.2. Combination
Combination is a pointwise multiplication mechanism con-

ducted to combine the information provided by the operand func-
tions. A combination of two given functions fa and fb can be written
as fa[b = fa � fb, where a and b are set of variables. Table 3 provides
an example.

4.1.3. Marginalization
Given a function fa[b, where a and b are set of variables, margin-

alizing over b provides a function of a and that can be given as
fa ¼ f marðbÞ

a[b . This process provides the marginals of a single variable
or a set of variables. Generally the process can be done by summing
or maximizing or minimizing over the marginalizing variables in b.
Normally the summation operator is used to calculate the proba-
bility distributions. In MAP hypothesis both summation and max-
imization operators are involved.

The computational scheme of the Shenoy–Shafer algorithm is
based on fusion algorithm proposed by Shenoy in [22]. The con-
struction mechanism of the binary Join tree uses this fusion algo-
rithm. Please note that for the sake of simplicity and better
understanding, we use a simpler example as shown in Fig. 3a to ex-
plain the fusion algorithm, construction of binary Join tree and infer-
ence in binary Join tree.

Given a probabilistic network, like our probabilistic error model
in Fig. 3a, the fusion method can be explained as follows:

1. The valuations provided are associated with the correspond-
ing variables forming a valuation network as shown in Fig. 3b.
In our example, the valuations are /I1 for {I1}, /I2 for {I2}, /X1

for {X1, I1, I2}, /X2 for {X2, I1, I2}, /O1 for {O1,X1,X2}.
2. A variable Yi 2 Y for which the probability distribution has to

be found out is selected. In our example let us say we select I1.
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

Table 3
Combination.

6 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
3. Choose an arbitrary variable elimination order. For the
example network let us choose the order as O1, X1, X2, I2.
When a variable Yi is eliminated, the functions associated
with that variable f 1

Yi
; . . . ; f j

Yi
are combined and the resulting

function is marginalized over Yi. It can be represented as,
ðf 1

Yi
� � � � � f j

Yi
ÞmarðYiÞ. This function is then associated with

the neighbors of Yi. This process is repeated until all the vari-
ables in the elimination order are removed. Fig. 3 illustrates
the fusion process.
Ple
hy
Eliminating O1 yields the function (/O1)mar(O1) associated to
neighbors X1, X2.
Eliminating X1 yields the function ((/O1)mar(O1) � /X1)mar(X1)

associated to neighbors X2, I1, I2.
Eliminating X2 yields the function (((/O1)mar(O1) �
/X1)mar(X1) � /X2)mar(X2) associated to neighbors I1, I2.
Eliminating I2 yields the function ((((/O1)mar(O1) �
/X1)mar(X1) � /X2)mar(X2) � /I2)mar(I2) associated to neighbor
I1.
According to a theorem presented in [21], combining the
functions associated with I1 yields the probability distribu-
tion of I1. /I1 � ((((/O1)mar(O1) � /X1)mar(X1) � /X2)mar(X2) �
/I2)mar(I2) = (/I1 � /O1 � /X1 � /X2 � /I2)mar(O1,X1,X2,I2) =
Probability distribution of I1 [21]. Note that the function
/I1 � /O1 � /X1 � /X2 � /I2 represents the joint probability
of the entire probabilistic error model.
(a)
Fig. 3. Illustration of th

ase cite this article in press as: Lingasubramanian K et al. Maximum error m
pothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
4. The above process is repeated for all the other variables
individually.

To perform efficient computation, an additional undirected net-
work called Join tree is formed from the original probabilistic net-
work. The nodes of the Join tree contains clusters of nodes from the
original probabilistic network. The information of locally con-
nected variables, provided through valuations, is propagated in
the Join tree by message passing mechanism. To increase the com-
putational efficiency of the Shenoy–Shafer algorithm, a special
kind of Join tree named binary Join tree is used. In a binary Join tree,
every node is connected to no more than three neighbors. In this
framework only two functions are combined at an instance, there-
by reducing the computational complexity. We will first explain
the method to construct a binary Join tree, as proposed by Shenoy
in [21], and then we will explain the inference scheme using mes-
sage passing mechanism.

Construction of Binary Join Tree: The binary Join tree is constructed
using the fusion algorithm. Please consider the probabilistic error
model in Fig. 3a as an example. Fig. 4 illustrates the binary Join tree
construction method for the probabilistic error model in Fig. 3a.
Fig. 4a explains a portion of the construction method for the first cho-
sen variable, here it is O1. Fig. 4b illustrates the entire method. The
construction of binary Join tree can be explained as follows:

1. To begin with we have,
K) A set that contains all the variables from the original prob-
abilistic network. In our example, K = {I1, I2,X1,X2,O1}.
C) A set that contains the subsets of variables, that should be
present in the binary Join tree. i.e., the subsets that denote the
valuations and the subsets whose probability distributions are
needed to be calculated. In our example, let us say that we need
to calculate the individual probability distributions of all the
variables. Then we have, C = {{I1}, {I2}, {X1, I1, I2}, {X2, I1, I2},
{O1,X1,X2}, {X1}, {X2}, {O1}}.
N) A set that contains the nodes of the binary Join tree and it
is initially null.
E) A set that contains the edges of the binary Join tree and it is
initially null.
We also need an order in which we can choose the variables to
form the binary Join tree. In our example, since the goal is to
find out the probability distribution of I1, this order should
(b)
e fusion algorithm.

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

(a)

(b)
Fig. 4. (a) Probabilistic error model as shown in Fig. 3 for which the binary Join tree has to be constructed and the partial illustration of Binary Join tree construction method
for the first chosen variable. (b) Complete illustration of Binary Join tree construction method.

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 7
reflect the variable elimination order (O1,X1,X2, I2, I1) used in
fusion algorithm.
jCYj indicates the number of elements in set CY.
P
h

2. 1:
lease cite
ypothesi
while jCj > 1 do
this article in press as: Lingasubramanian K et al. Maximum
s. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.
2:
 Choose a variable Y 2K

3:
 CY = {ci 2 CjY 2 ci}

4:
 while jCYj > 1 do

5:
 Choose ci 2CY and cj 2 CY such that

jci [cjj 6 jcm [cnj for all cm, cn 2CY
6:
 ck = ci [cj
7:
 N ¼N [fcig [fcjg [fckg
error mod
07.156
8:
eling for
E ¼ E [ffci; ckg; fcj; ckgg
fault-tolerant computation using maximum a posteriori (M
9:
 CY = CY � {ci,cj}

10:
 CY = CY [{ck}

11:
 end while

12:
 if jKj > 1 then

13:
 Take ci where ci = CY
14:
 cj = ci � {Y}

15:
 N ¼N [fcig [fcjg

16:
 E ¼ E [ffci; cjgg

17:
 C = C [{cj}

18:
 end if

19:
 C = C � {ci 2 CjY 2 ci}

20:
 K = K � {Y}

21:
 end while
AP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

ctronics Reliability xxx (2010) xxx–xxx
3. The final structure will have some duplicate clusters. Two neigh-

boring duplicate clusters can be merged into one, if the merged
node does not end up having more than three neighbors. After
merging the duplicate nodes we get the binary Join tree.

Note that, even though the binary Join tree is constructed with a
specific variable elimination order for finding out the probability
distribution of I1, it can be used to find out the probability distri-
butions of other variables too.

Inference in binary Join tree: Inference in a binary Join tree is per-
formed using message passing mechanism. Initially all the valua-
tions are associated to the appropriate clusters. In our example,
at Fig. 5, which represents the binary Join tree constructed from
the probabilistic error model in Fig. 3a, the valuations are associ-
ated to these following clusters:

– /I1 associated to cluster C11
– /I2 associated to cluster C10
– /X1 associated to cluster C6
– /X2 associated to cluster C7
– /O1 associated to cluster C2

A message passed from cluster b, containing a variable set B, to
cluster c, containing a variable set C can be given as,

Mb!c ¼ /b

Y
a–c

Ma!b

 !marðBnCÞ

¼
X
8BnC

/b

Y
a–c

Ma!b

 !
ð7Þ

where /b is the valuation associated with cluster b. If cluster b is not
associated with any valuation, then this function is omitted from
the equation. The message from cluster b can be sent to cluster c
only after cluster b receives messages from all its neighbors other
than c. The resulting function is marginalized over the variables in
cluster b that are not in cluster c. Note that summation operator
is used to marginalize variables. To calculate the probability distri-
bution of a variable Yi, the cluster having that variable alone is taken

8 K. Lingasubramanian et al. / Microele
(a)

(c)
Fig. 5. Illustration of the message passing mechanism in the binary Join tree constructed
cluster C11 as root. (b) Message passing with cluster C1 as root. (c) Message storage me

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
as root and the messages are passed towards this root. Probability
of Yi, P(Yi), is calculated at the root. In our example, at Fig. 5a, to find
the probability distribution of I1, the cluster C11 is chosen as the
root. The messages from all the leaf clusters are sent towards C11
and finally the probability distribution of I1 can be calculated as,
P(I1) = MC9?C11 � /I1. Also note that the order of the marginalizing
variables is O1, X1, X2, I2 which exactly reflects the elimination or-
der used to construct the binary Join tree. As we mentioned before,
this binary Join tree can be used to calculate probability distribu-
tions of other variables also. In our example, at Fig. 5b, to find out
the probability distribution of O1, cluster C1 is chosen as root and
the messages from the leaf clusters are passed towards C1 and final-
ly the probability distribution of O1 can be calculated as,
P(O1) = MC2?C1. Note that the order of the marginalizing variables
changes to I1, I2, X1, X2. We can also calculate joint probability dis-
tributions of the set of variables that forms a cluster in the binary
Join tree. In our example, the joint probability P(I1, I2) can be calcu-
lated by assigning cluster C9 as root. In this fashion, the probability
distributions of any individual variable or a set of variables can be
calculated by choosing appropriate root cluster and sending the
messages towards this root. During these operations some of the
calculations are not modified and so performing them again will
prove inefficient. Using the binary Join tree structure these calcula-
tions can be stored thereby eliminating the redundant recalculation.
In the binary Join tree, between any two clusters b and c, both the
messages Mb?c and Mc?b are stored. Fig. 5c illustrates this phenom-
enon using our example.

Inference in binary Join tree with evidence: If an evidence set e is
provided, then the additional valuations feYi

jYi 2 eg provided by
the evidences has to be associated with the appropriate clusters.
A valuation eYi

for a variable Yi can be associated with a cluster
having Yi alone. In our example, if the variable O1 is evidenced,
e = O1 = 1, then the corresponding valuation eO1 can be associated
with cluster C1, as shown in Fig. 6a. While finding the probability
distribution of a variable Yi, the inference mechanism (as explained
(b)

in Fig. 4 from the probabilistic error model given in Fig. 3a. (a) Message passing with
chanism.

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 9
before) with an evidence set e will give the joint probability P(Yi,e)
instead of P(Yi). From P(Yi,e), P(e) is calculated as,
PðeÞ ¼

P
Yi

PðYi; eÞ. Calculation of the probability of evidence P(e)
is crucial for MAP calculation.

Inference in binary Join tree for MAP calculation: The MAP proba-
bilities MAP(iinter,o) are calculated by performing inference on the
binary Join tree with evidences iinter and o, as shown in Fig. 7. Let us
say that we have an evidence set e = {iinter,o}, then MAP(iinter,o)
= P(e). So eventually we have to calculate P(e) by performing
(a)

Fig. 7. Illustration of the message passing mechanism for MAP calculation in the binary
Message passing with cluster C11 as root. (b) Message passing with cluster C1 as root.

(a)

Fig. 6. Illustration of the message passing mechanism with evidence in the binary Join
Message passing with cluster C11 as root. (b) Message passing with cluster C1 as root.

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
inference in the binary join tree. For a given partial instantiation
iinter, MAP(iinter,o) is calculated by maximizing over the MAP variables.
This calculation can be done by modifying the message passing scheme
to accommodate maximization over MAP variables. So for MAP calcu-
lation, the marginalization operation involves both maximization and
summation functions. The maximization is performed over the MAP
variables in I and the summation is performed over all the other vari-
ables in X and O. For MAP, the message passing scheme from clus-
ter b to cluster c is modified from Eq. (7) as,
(b)

Join tree constructed in Fig. 4 from the probabilistic error model given in Fig. 3a. (a)

(b)

tree constructed in Fig. 4 from the probabilistic error model given in Fig. 3a. (a)

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

10 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
Mb!c ¼ max
fIbg2fBnCg

X
fXb[Obg2fBnCg

/b

Y
a–c

Ma!b ð8Þ

where Ib # I, Xb # X, Ob # O and {Ib, Xb, Ob} 2 B. For example, as
shown in Fig. 7, let us consider the binary Join tree constructed from
the probabilistic error model given in Fig. 3a. This probabilistic
model consists for two MAP variables {I1, I2}. Let us consider the
partial instantiation, iinter = {I1 = 1}. To find the intermediate MAP
probability, MAP(iinter,o), the evidence set should be e = {iinter,
o} = {I1 = 1,O1 = 1}. The corresponding valuations, eI1 and eO1,
resulting from the evidence set, should be associated with cluster
C11 and C1 respectively. During message passing in the binary Join
tree shown in Fig. 7, note that when the marginalizing variable is a
MAP variable, the maximizing operator is used instead of summing
operator as shown in Figs. 5 and 6. Please note the difference be-
tween the messages MC9?C11 and MC5?C3 in Figs. 6 and 7. This ac-
tion basically maximizes the resulting joint probability
MAP(iinter,o) which is calculated as P(e) by marginalizing over the
joint probability acquired at the root cluster, as shown in Fig. 7.
Please note that since the marginalizing variable is a MAP variable
(I1), maximization operator is used in Fig. 7a.

Valid variable elimination order for MAP computation: In the mes-
sage passing scheme for MAP computation given by Eq. (8), the
most important aspect is that the maximization and summation
operators in Eq. (8) are non-commutative.

X
X

max
I

P

" #
ðyÞP max

I

X
X

P

" #
ðyÞ ð9Þ

So during message passing in the binary Join tree, the valid order
of the marginalizing variables or the valid variable elimination order
should have the summation variables in X and O before the maxi-
mization variables in I. A message pass through an invalid variable
elimination order can result in a bad upper bound that is stuck at a
local maxima and it eventually results in the elimination of some
probable instantiations of the MAP variables I during the search
process. But an invalid elimination order can provide us an initial
upper bound of the MAP probability to start with. The closer the in-
valid variable elimination order to the valid one, the tighter will be
the upper bound. In the binary Join tree, any cluster can be chosen
as root to get this initial upper bound. For example, in Fig. 7b choos-
ing cluster C1 as root results in an invalid variable elimination order
I1, I2, X1, X2 and message pass towards this root can give the initial
upper bound. Also it is essential to use a valid variable elimination
order during the construction of the binary Join tree so that there is
at least one path that can provide a good upper bound.

Now we will explore the variable elimination order through an-
other example as shown in Fig. 8 and explain the mechanism to
calculate the MAP solution. Fig. 8 gives the corresponding binary
Join tree, for the probabilistic error model given in Fig. 1c, con-
structed with a valid variable elimination order (O1,X3,X6,
X1,X2,X4,X5, I3, I2, I1). In this model, there are three MAP variables
{I1, I2, I3}. The MAP hypothesis on this model results in
iMAP = {I1 = 0, I2 = 0, I3 = 0}.

The initial upper bound MAP({},o) is calculated by choosing
cluster C2 as root and passing messages towards C2. As specified
earlier this upper bound can be calculated with any cluster as root.
With C2 as root, an upper bound will most certainly be obtained
since the variable elimination order (I3, I2, I1,X4,X5,X1,X2,X3,X6)
is an invalid one. But since the maximization variables are at the
very beginning of the order, having C2 as root will yield a looser
upper bound. Instead, if C16 is chosen as root, the elimination or-
der (O1,X3,X6,X1, I3,X4,X5, I2, I1) will be closer to a valid order. So
a much tighter upper bound can be achieved. To calculate an inter-
mediate upper bound MAP(iinter,o), the MAP variable Ii newly
added to form iinter is recognized and the cluster having the vari-
Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
able Ii alone is selected as root. By doing this a valid elimination or-
der and proper upper bound can be achieved. For example, to
calculate the intermediate upper bound MAP({I1 = 0},o) where
the instantiation {I1 = 0} is newly added to the initially empty set
iinter, a valid elimination order should have the maximization vari-
ables I2, I3 at the end. To achieve this, cluster C31 is chosen as root
thereby yielding a valid elimination order (O1,X3,X6,X1,X2,X4,
X5, I3, I2).

4.2. Calculation of the exact MAP solution

Fig. 9 illustrates the search process for MAP computation in the
binary search tree given in Fig. 2 for the probabilistic error model gi-
ven in Fig. 1c. The calculation of the exact MAP solution MAP(iMAP,o)
can be explained as follows:

1. To start with we have the following:
ode
Iinter? subset of MAP variables I. Initially empty.
iinter? partial instantiation set of MAP variables Iinter. Initially
empty.
id1 ; id2 ! partial instantiation sets used to store iinter. Initially
empty.
iMAP? MAP instantiation. At first, iMAP = iinit, where iinit is calcu-
lated by sequentially initializing the MAP variables to a partic-
ular instantiation and performing local taboo search around
the neighbors of that instantiation [29]. Since this method is
out of the scope of this paper, we are not explaining it in detail.
MAP(iMAP,o)? MAP probability. Initially MAP(iMAP,o) = MAP(iinit,o)
calculated by inferencing the probabilistic error model.
v(Ii)? number of values or states that can be assigned to a vari-
able Ii. Since we are dealing with digital signals, v(Ii) = 2 for all i.
2. 1:
ling for
Calculate MAP(iinter,o). /*This is the initial upper bound
of MAP probability.*/
2:
 if MAP(iinter,o) P MAP(iMAP,o) then

3:
 MAP(iMAP,o) = MAP(iinter,o)

4:
 else

5:
 MAP(iMAP,o) = MAP(iMAP,o)

6:
 iMAP = iMAP
7:
 end if

8:
 while jIj > 0 do

9:
 Choose a variable Ii 2 I.

10:
 Iinter = Iinter [{Ii}.

11:
 while v(Ii) > 0 do

12:
 Choose a value ivðIiÞ of Ii
13:
 id1
¼ iinter [fIi ¼ ivðIiÞg.
14:
 Calculate MAPðid1
;oÞ from binary Join tree.
15:
 if MAPðid1
;oÞP MAPðiMAP ;oÞ then
16:
 MAPðiMAP;oÞ ¼ MAPðid1
;oÞ
17:
 id2
¼ id1
18:
 else

19:
 MAP(iMAP,o) = MAP(iMAP,o)

20:
 end if

21:
 v(Ii) = v(Ii) � 1

22:
 end while

23:
 iinter ¼ id2
24:
 if jiinterj = 0 then

25:
 goto line 29

26:
 end if

27:
 I = I � {Ii}

28:
 end while

29:
 if jiinterj = 0 then
fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 11

P
h

30:
lease cite
ypothesis
iMAP = iMAP
31:
 else

32:
 iMAP = iinter
33:
 end if
The pruning of the search process is handled in lines 11–23.
After choosing a MAP variable Ii, the partial instantiation set iinter

is updated by adding the best instantiation Ii ¼ ivðIiÞ thereby ignor-
ing the other instantiations of Ii.

4.3. Calculating the maximum output error probability

According to our error model, the MAP variables represent the
primary input signals of the underlying digital logic circuit. So after
MAP hypothesis, we will have the input vector which has the high-
est probability to give an error on the output. The random variables
I that represent the primary input signals are then instantiated
with iMAP and inferenced. So the evidence set for this inference cal-
culation will be e = {iMAP}. The output error probability is obtained
by observing the probability distributions of the comparator logic
variables O. After inference, the probability distribution P(Oi,e) will
be obtained. From this P(Oije) can be obtained as, PðOi j eÞ ¼
(a)

(b)

Fig. 8. (a) Probabilistic error model as shown in

this article in press as: Lingasubramanian K et al. Maximum error m
. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
PðOi ;eÞ
PðeÞ ¼

PðOi ;eÞP
Oi

PðOi ;eÞ
. Finally the maximum output error probability is

given by, maxiP(Oi = 1je).

4.4. Computational complexity of MAP estimate

The time complexity of MAP depends on that of the depth
first branch and bound search on the input instantiation search
tree and also on that of inference in binary Join tree. The former
depends on the number of MAP variables and the number of
states assigned to each variable. In our case each variable is as-
signed two states and so the time complexity can be given as
O(2k) where k is the number of MAP variables. This is the worst
case time complexity assuming that the search tree is not
pruned. If the search tree is pruned, then the time complexity
will be <O(2k).

The time complexity of inference in the binary Join tree depends
on the number of cliques q and the size Z of the biggest clique. It
can be represented as q � 2Z and the worst case time complexity
can be given as O(2Z). In any given probabilistic model with N vari-
ables, representing a joint probability P(x1, . . . ,xN), the correspond-
ing Join tree will have Z < N always [24]. Also depending on the
underlying circuit structure, the Join tree of the corresponding
Fig. 1c. (b) Corresponding binary Join tree.

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

(a)

(b)

(c)

Fig. 9. illustration of the search process for MAP computation in the binary search tree given in Fig. 2 for the probabilistic error model given in Fig. 1c. (a) Probabilistic error
model. (b) Corresponding binary search tree. (c) Search process for MAP computation.

12 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
probabilistic error model can have Z� N or Z close to N, which in
turn determines the time complexity.
Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
Since for every pass in the search tree inference has to be per-
formed in the Join tree to get the upper bound of MAP probability,
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 13
the worst case time complexity for MAP can be given as O(2k+Z).
The space complexity of MAP depends on the number of MAP vari-
ables for the search tree and on the number of variables N in the
probabilistic error model and the size of the largest clique. It can
be given by 2k + N � 2Z.

5. Experimental results

The experiments are performed on ISCAS85 and MCNC bench-
mark circuits. The computing device used is a Sun server with 8
CPUs where each CPU consists of 1.5 GHz UltraSPARC IV processor
with at least 32 GB of RAM.

5.1. Experimental procedure for calculating maximum output error
probability

Our main goal is to provide the maximum output error proba-
bilities for different gate error probabilities e. To get the maximum
output error probabilities every output signal of a circuit has to be
examined through MAP estimation, which is performed through
algorithms provided in [30]. The experimental procedure is illus-
trated as a flow chart in Fig. 10. The steps are as follows:

1. First, an evidence has to be provided to one of the comparator
output signal variables in set O such that P(Oi = 0) = 0 and
P(Oi = 1) = 1. Recall that these variables have a probability dis-
tribution based on XOR logic and so giving evidence like this
is similar to forcing the output to be wrong.
Take the probabilistic model for a
given digital logic circuit

Provide evidence P(or = 0) = 0 and P(or = 1) = 1 to
out put or where r = 1,…,n

Perform MAP hypothesis

Obtain the output probability
P(or) = max P(oi = 1)

i

where i = 1,…,n.

Obtain the input instantiation i and
instantiate the input variables in the probabilistic

model with i and perform inference.

Is
r = n

Obtain the probability
P(o) = max P(or = 1)

r

where r = 1,…,n.

No

Yes

Fig. 10. Flow chart describing the experimental setup and process.

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
2. The comparator outputs are evidenced individually and the cor-
responding input instantiations i are obtained by performing
MAP.

3. Then the primary input variables in the probabilistic error
model are instantiated with each instantiation i and inferenced
to get the output probabilities.

4. P(Oi = 1) is noted from all the comparator outputs for each i and
the maximum value gives the maximum output error
probability.

5. The entire operation is repeated for different e values.

5.2. Worst-case input vectors

Table 4 gives the worst-case input vectors got from MAP i.e., the
input vectors that gives maximum output error probability. The
notable results are as follows:

� In max_flat and voter the worst-case input vectors from MAP
changes with e, while in c17 it does not change.
� In the range {0.005–0.2} for e, max_flat has three different

worst-case input vectors while voter has two.
� It implies that these worst-case input vectors not only depend

on the circuit structure but could dynamically change with e.
This could be of concern for designers as the worst-case inputs
might change after gate error probabilities reduce due to error
mitigation schemes. Hence, explicit MAP computation would
be necessary to judge the maximum error probabilities and
worst-case vectors after every redundancy schemes are applied.

5.3. Circuit-specific error bounds for fault-tolerant computation

The error bound for a circuit can be obtained by calculating the
gate error probability e that drives the output error probability of
at least one output to a hard bound beyond which the output does
not depend on the input signals or the circuit structure. When the
output error probability reaches 0.5(50%), it essentially means that
the output signal behaves as a non-functional random number
generator for at least one input vector and so 0.5 can be treated
as a hard bound.

Fig. 11 gives the error bounds for various benchmark circuits. It
also shows the comparison between maximum and average output
error probabilities with reference to the change in gate error prob-
ability e. These graphs are obtained by performing the experiment
for different e values ranging from 0.005 to 0.1. The average error
probabilities are obtained from our previous work by Rejimon
et al. [26]. The notable results are as follows:

� The c17 circuit consists of 6 NAND gates. The error bound for
each NAND gate in c17 is e = 0.1055, which is greater than the
conventional error bound for NAND gate, which is 0.08856
[6,7]. The error bound of the same NAND gate in voter circuit
(contains 10 NAND gates, 16 NOT gates, 8 NOR gates, 15 OR
gates and 10 AND gates) is e = 0.0292, which is lesser than the
conventional error bound. This indicates that the error bound
for an individual NAND gate placed in a circuit can be dependent
on the circuit structure. The same can be true for all other logics.
Table 4
Worst-case input vectors from MAP.

Circuits No. of inputs Input vector Gate error probability e

c17 5 01111 0.005–0.2
max_flat 8 00010011 0.005–0.025

11101000 0.03–0.05
11110001 0.055–0.2

voter 12 000100110110 0.01–0.19
111011100010 0.2

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12

0 0.02 0.04 0.06 0.08 0.1 0.120 0.02 0.04 0.06 0.08 0.1 0.120 0.02 0.04 0.06 0.08 0.1 0.12

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.1055

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.069

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.0292

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.0407

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.071

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.0255

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

Gate error probability = 0.0235

(a) (b) (c)

(e) (f) (g)

(d)

Fig. 11. Circuit-specific error bound for (a) c17, (b) max_flat, (c) voter, (d) pc, (e) count, (f) alu4, (g) malu4. The figures also show the comparison between maximum and
average output error probabilities, that indicates the importance of using maximum output error probability to achieve a tighter error bound.

14 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
� The maximum output error probabilities are much larger than
average output error probabilities, thereby reaching the hard
bound for comparatively lower values of e, making them a very
crucial design parameter to achieve tighter error bounds. Only
for alu4 and malu4, the average output error probability reaches
the hard bound within e = 0.1(e = 0.095for alu4, e = 0.08for
malu4), while the maximum output error probabilities for these
circuits reach the hard bound for far lesser gate error probabil-
ities (e = 0.0255 for alu4, e = 0.0235 for malu4).
� While the error bounds for all the circuits, except c17, are less

than 0.08(8%), the error bounds for circuits like voter, alu4 and
malu4 are even less than 0.03(3%) making them highly vulner-
able to errors.

Table 5 tabulates the run time for MAP computation. The run
time does not change significantly for different e values and so
we provide only one run time which corresponds to all e values.
This is expected as MAP complexity (discussed in Section 4.4) is
determined by number of inputs, and number of variables in the
largest clique which in turn depends on the circuit complexity. It
has to be noted that, even though pc has less number of inputs than
count, it takes much more time to perform MAP estimate due to its
complex circuit structure.

5.4. Validation using HSpice simulator

5.4.1. HSpice model
Using external voltage sources error can be induced in any sig-

nal and it can be modeled using HSpice [42]. In our HSpice model
we have induced error, using external voltage sources, in every
gate’s output. Consider signal Of is the original error free output
signal and the signal Op is the error prone output signal and E is
the piecewise linear (PWL) voltage source that induces error. The
basic idea is that the signal Op is dependent on the signal Of and
Table 5
Run times for MAP computation.

Circuit No. of inputs No. of gates Time (s)

c17 5 6 0.047
max_flat 8 29 0.110
voter 12 59 0.641
pc 27 103 225.297
count 35 144 36.610
alu4 14 63 58.626
malu4 14 92 588.702

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
the voltage E. Any change of voltage in E will be reflected in Op.
If E = 0v, then Op = Of, and if E = Vdd(supply voltage), then Op – Of,
thereby inducing error. The data points for the PWL voltage source
E are provided by computations on a finite automata which models
the underlying error prone circuit where individual gates have a
gate error probability e.
5.4.2. Simulation setup
Note that, for an input vector of the given circuit, a single sim-

ulation run in HSpice is not enough to validate the results from our
probabilistic model. Also the circuit has to be simulated for each
and every possible input vectors to find out the worst-case one.
For a given circuit, the HSpice simulations are conducted for all pos-
sible input vectors, where for each vector the circuit is simulated for 1
million runs and the comparator nodes are sampled. From this data
the maximum output error probability and the corresponding
worst-case input vector are obtained.

Table 6 gives the comparison between maximum error proba-
bilities achieved from the proposed model and the HSpice simula-
tor at e = 0.05. The notable results are as follows:

� The simulation results from HSpice almost exactly coincides
with those of our error model for all circuits.
� The highest percentage difference of our error model over

HSpice is just 1.23%.

Fig. 12a gives the output error probabilities for the entire input
vector space of c17 with gate error probability e = 0.05. The notable
results are as follows:

� It can be clearly seen that the results from both the probabilistic
error model and HSpice simulations show that 01111 gives the
maximum output error probability.
Table 6
Comparison between maximum error probabilities achieved from the proposed
model and the HSpice simulator at e = 0.05.

Circuit Model HSpice % Diff. over HSpice

c17 0.312 0.315 0.95
max_flat 0.457 0.460 0.65
voter 0.573 0.570 0.53
pc 0.533 0.536 0.56
count 0.492 0.486 1.23
alu4 0.517 0.523 1.15
malu4 0.587 0.594 1.18

odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

(a)

(b) (c)

Fig. 12. (a) Output error probabilities for the entire input vector space with gate error probability e = 0.05 for c17. (b) Output error probabilities P(l + r), calculated from
probabilistic error model, with gate error probability e = 0.05 for max_flat. (c) Output error probabilities P(l + r), calculated from HSpice, with gate error probability e = 0.05
for max_flat.

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 15
Fig. 12b and c give the output error probabilities, obtained from
the probabilistic error model and HSpice respectively, for max_flat
with gate error probability e = 0.05. In order to show that max_flat
has large number of input vectors capable of generating maximum
output error, we plot output error probabilities P((l) + (r)), where
l is the mean of output error probabilities and r is the standard
deviation. The notable results are as follows:

� It is clearly evident from Fig. 12b that max_flat has a consider-
ably large amount of input vectors capable of generating output
error thereby making it error sensitive. Equivalent HSpice
results from Fig. 12c confirms this aspect.
Fig. 13. Comparison between the average and maximum output error probability
and run time for e = 0.005, e = 0.05 and variable e ranging for 0.005–0.05 for
max_flat.

Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
� It is clearly evident that the results from probabilistic error
model and HSpice show the same worst-case input vector,
11101000, that is obtained through MAP hypothesis.

5.5. Results with multiple e

Apart from incorporating a single gate error probability e in all
gates of the given circuit, our model also supports to incorporate
different e values for different gates in the given circuit. Ideally
these e values has to come from the device variabilities and man-
ufacturing defects. Each gate in a circuit will have an e value se-
lected in random from a fixed range, say 0.005–0.05.

We have presented the result in Fig. 13 for max_flat. Here we
compare the average and maximum output error probability and
run time with e = 0.005, e = 0.05 and variable e ranging for 0.005–
0.05. The notable results are as follows:

� It can be seen that the output error probabilities for variable e are
closer to those for e = 0.05 than for e = 0.005 implicating that the
outputs are affected more by the erroneous gates with e = 0.05.
� The run time for all the three cases are almost equal, thereby

indicating the efficiency of our model.

6. Conclusion

We have proposed a probabilistic model that computes the ex-
act maximum output error probabilities for a logic circuit and map
this problem as maximum a posteriori hypothesis of the underlying
joint probability distribution function of the network. We have
demonstrated our model with standard ISCAS and MCNC bench-
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

16 K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx
marks and provided the maximum output error probability and the
corresponding worst-case input vector. We have also studied the
circuit-specific error bounds for fault-tolerant computing. The re-
sults clearly show that the error bounds are highly dependent on
circuit structure and computation of maximum output error is
essential to attain a tighter bound.

6.1. Possible applications

In IC testing, the usage of a probabilistic error model and the
information about the worst-case input vector can help to im-
prove testing techniques like scan chains, burn-in test and hierar-
chical testing. Scan chains are widely used in Design for Test
(DFT) methodologies for IC testing. The basic idea is to form a
chain of flip-flops that are made scan-able and the desired test
pattern can be serially inserted into the flip-flop chain. The test
pattern is applied to the logic circuits driven by the flip-flop chain
after which the logic circuit outputs can also be captured into the
same or different flip-flop chain for serial shift-out. In such a set-
up, including the worst-case input vector in the test patterns can
speed up the testing process, since the most hazardous behavior
of the circuit-under-test can be detected with the worst-case in-
put vector. Burn-in tests are performed to find out devices with
inherent defects or manufacturing defects [46]. These devices will
go faulty when subjected to high stress. The IC is subjected to
long test time and stress conditions, such as extreme supply volt-
ages and temperatures, during a burn-in test. To aid the burn-in
test, a probabilistic error model that can target and exercise indi-
vidual device fault modes would help to expedite the failure
mechanisms and to screen for inherent faults in a shorter test
time. More specifically, the worst case input vectors generated
according to our method is well suited for application during
the burn-in test. Finally, in hierarchical testing, the entire cir-
cuit-under-test is divided into several internal modules where
these modules can be tested individually. Such a hierarchical divi-
sion reduces the size of circuit-under-test facilitating rigorous
probabilistic error analysis and the application of worst input vec-
tors to the targeted internal modules.

6.2. Future work

Extending our proposed algorithm one can also obtain a set of,
say N, input patterns which are highly likely to produce an error in
the output. Circuit designers will have to pay extra attention in
terms of input redundancy for these set of vulnerable inputs
responsible for the high end of error spectrum. We are already
working on the stochastic heuristic algorithms for both average
and maximum error for mid-size benchmarks where exact algo-
rithms are not tractable. This work should serve as a baseline exact
estimate to judge the efficacy of the various stochastic heuristic
algorithms that will be essential for circuits of higher dimensions.
Our future effort is to model the gate error probabilities derived
from the physics of the device and fabrication methods. This will
be achieved by calibrating the effect of variations in device and
process parameters like threshold voltage, temperature, effective
channel length, gate oxide thickness and doping concentration,
on individual gates. We will also focus on modeling delay faults
due to timing violations and modeling variability in error
probabilities.

References

[1] von Neumann J. ‘Probabilistic logics and the synthesis of reliable organisms
from unreliable components. In: Shannon CE, McCarthy J, editors. Automata
studies. Princeton (NJ): Princeton Univ. Press; 1954. p. 43–98.
Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
[2] Pippenger N. Reliable computation by formulas in the presence of noise. IEEE
Trans Inform Theory 1988;34(2):194–7.

[3] Feder T. Reliable computation by networks in the presence of noise. IEEE Trans
Inform Theory 1989;35(3):569–71.

[4] Hajek B, Weller T. On the maximum tolerable noise for reliable computation by
formulas. IEEE Trans Inform Theory 1991;37(2):388–91.

[5] Evans W, Schulman LJ. On the maximum tolerable noise of k-input gates for
reliable computation by formulas. IEEE Trans Inform Theory
2003;49(11):3094–8.

[6] Evans W, Pippenger N. On the maximum tolerable noise for reliable
computation by formulas. IEEE Trans Inform Theory 1998;44(3):
1299–305.

[7] Gao JB, Qi Y, Fortes JAB. Bifurcations and fundamental error bounds for fault-
tolerant computations. IEEE Trans Nanotechnol 2005;4(4):395–402.

[8] Marculescu D, Marculescu R, Pedram M. Theoretical bounds for switching
activity analysis in finite-state machines. IEEE Trans VLSI Syst
2000;8(3):335–9.

[9] Depledge PG. Fault-tolerant computer systems. IEE Proc A
1981;128(4):257–72.

[10] Spagocci S, Fountain T. Fault rates in nanochip devices. In: Electrochemical
society; 1999. p. 354–68.

[11] Han J, Jonker P. A defect- and fault-tolerant architecture for nanocomputers.
Nanotechnology 2003;14:224–30.

[12] Roy S, Beiu V. Majority multiplexing-economical redundant fault-tolerant
designs for nano architectures. IEEE Trans Nanotechnol 2005;4(4):441–51.

[13] Nikolic K, Sadek A, Forshaw M. Fault-tolerant techniques for nanocomputers.
Nanotechnology 2002;13:357–62.

[14] Han J, Taylor E, Gao J, Fortes JAB. Reliability modeling of nanoelectronic
circuits. In: IEEE Conference on Nanotechnology; 2005.

[15] Simsir MO, Cadambi S, Ivancic F, Roetteler M, Jha NK. Fault-tolerant computing
using a hybrid nano-CMOS architecture. In: International conference on VLSI
design; 2008. p. 435–40.

[16] Chen C, Mao Y. A statistical reliability model for single-electron threshold
logic. IEEE Trans Electron Dev 2008;55:1547–53.

[17] Abdollahi A. Probabilistic decision diagrams for exact probabilistic analysis. In:
Proceedings of the 2007 IEEE/ACM international conference on computer-
aided design; 2007. p. 266–72.

[18] Choudhury MR, Mohanram K. Accurate and scalable reliability analysis of logic
circuits. DATE 2007:1454–9.

[19] Lazarova-Molnar S, Beiu V, Ibrahim W. A strategy for reliability assessment of
future nano-circuits. In: WSEAS international conference on circuits; 2007. p.
60–5.

[20] Shenoy PP, Shafer G. Propagating belief functions with local computations.
IEEE Expert 1986;1(3):43–52.

[21] Shenoy PP. Binary join trees for computing marginals in the Shenoy–Shafer
architecture. Int J Approx Reason 1997:239–63.

[22] Shenoy PP. Valuation-based systems: a framework for managing uncertainty
in expert systems. Fuzzy Logic Manage Uncertain 1992:83–104.

[24] Jensen FV, Lauritzen S, Olesen K. Bayesian updating in recursive graphical
models by local computation. Comput Stat Quart 1990:269–82.

[26] Rejimon T, Bhanja S. Probabilistic error model for unreliable nano-logic gates.
In: IEEE conference on nanotechnology; 2006. p. 717–22.

[27] Lingasubramanian K, Bhanja S. Probabilistic maximum error modeling for
unreliable logic circuits. In: ACM great lake symposium on VLSI; 2007. p. 223–
6.

[28] Park JD, Darwiche A. Solving MAP exactly using systematic search. In:
Proceedings of the 19th annual conference on uncertainty in artificial
intelligence; 2003.

[29] Park JD, Darwiche A. Approximating MAP using local search. In: Proceedings of
17th annual conference on uncertainty in artificial intelligence; 2001. p. 403–
10.

[30] Sensitivity analysis, modeling, inference and more. <http://
reasoning.cs.ucla.edu/samiam/>.

[31] Roth JP. Diagnosis of automata failures: a calculus and a method. IBM J Res Dev
1966;10(4):278–91.

[32] Goel P. An implicit enumeration algorithm to generate tests for combinational
logic circuits. IEEE Trans Comput 1981;C-30(3):215–22.

[33] Fujiwara H, Shimono T. On the acceleration of test generation algorithms. IEEE
Trans Comput 1983;C-32(12):1137–44.

[34] Agrawal VD, Seth SC, Chuang CC. Probabilistically guided test generation. In:
Proceedings of IEEE international symposium on circuits and systems; 1985. p.
687–90.

[35] Savir J, Ditlow GS, Bardell PH. Random pattern testability. IEEE Trans Comput
1984;C-33(1):79–90.

[36] Seth C, Pan L, Agrawal VD. PREDICT – Probabilistic estimation of digital circuit
testability. In: Proceedings of IEEE international symposium on fault-tolerant
computing; 1985. p. 220–5.

[37] Chakradhar ST, Bushnell ML, Agrawal VD. Automatic test generation using
neural networks. In: Proceedings of IEEE international conference on
computer-aided design, vol. 7 (10); 1988. p. 416–9.

[38] Mason M. FPGA reliability in space-flight and automotive applications. FPGA
Program Logic J 2005.

[40] Gerrish P, Herrmann E, Tyler L, Walsh K. Challenges and constraints in
designing implantable medical ICs. IEEE Trans Dev Mater Reliab
2005;5(3):435–44.
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://reasoning.cs.ucla.edu/samiam/
http://reasoning.cs.ucla.edu/samiam/
http://dx.doi.org/10.1016/j.microrel.2010.07.156

K. Lingasubramanian et al. / Microelectronics Reliability xxx (2010) xxx–xxx 17
[41] Stotts L. Introduction to implantable biomedical IC design. IEEE Circ Dev Mag
1999:12–8.

[42] Cheemalavagu S, Korkmaz P, Palem KV, Akgul BES, Chakrapani LN. A
probabilistic CMOS switch and its realization by exploiting noise. In:
Proceedings of the IFIP international conference on very large scale
integration; 2005.

[43] Martel R, Derycke V, Appenzeller J, Wind S, Avouris Ph. Carbon nanotube field-
effect transistors and logic circuits. In: Proceedings of the 39th conference on
design automation; 2002.
Please cite this article in press as: Lingasubramanian K et al. Maximum error m
hypothesis. Microelectron Reliab (2010), doi:10.1016/j.microrel.2010.07.156
[44] Kummamuru RK, Orlov AO, Ramasubramaniam R, Lent CS, Bernstein GH,
Snider GL, et al. Shift registers and analysis of errors. IEEE Trans Electron Dev
1993;50(59):1906–13.

[45] Mazumder P, Kulkarni S, Bhattacharya M, Sun Jian Ping, Haddad GI. Digital
circuit applications of resonant tunneling devices. Proc IEEE
1998;86(4):664–86.

[46] Military standard (MIL-STD-883). Test methods and procedures for
microelectronics; 1996.
odeling for fault-tolerant computation using maximum a posteriori (MAP)

http://dx.doi.org/10.1016/j.microrel.2010.07.156

	Maximum error modeling for fault-tolerant computation using maximum a posteriori (MAP) hypothesis
	Introduction
	Proposed work

	Prior work
	State-of-the-art
	Relation to State-of-the-art

	Probabilistic error model
	Maximum a posteriori (MAP) estimate
	Calculation of MAP upper bounds using Shenoy–Shafer algorithm
	Valuations
	Combination
	Marginalization

	Calculation of the exact MAP solution
	Calculating the maximum output error probability
	Computational complexity of MAP estimate

	Experimental results
	Experimental procedure for calculating maximum output error probability
	Worst-case input vectors
	Circuit-specific error bounds for fault-tolerant computation
	Validation using HSpice simulator
	HSpice model
	Simulation setup

	Results with multiple ε

	Conclusion
	Possible applications
	Future work

	References

