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Abstract— There has been recent proposals for the use of
nano-magnets to directly solve quadratic minimization prob-
lems, especially those arising in computer vision applications.
This is unlike proposals for using nano-magnets to represent
binary states. A collection of nano-magnets, when driven to
their ground states, can be seen to optimize a quadratic energy
function that is determined by their relative placement. By
controlling the relative placement of nano-magnets, we can
change the energy function being minimized. In this work, we
experimentally demonstrate this capability by fabricating and
testing an example of a quadratic optimization problem that
accomplishes line grouping.

I. INTRODUCTION

There has been significant growth in interest in field cou-
pled computing as a radically different computing paradigm.
One architecture that has been proposed is the Cellular Au-
tomata architecture [1], [2]. Cellular automata architectures
based on Coulombic interactions of electrons (Quantum-dot
cellular automata, QCA) have been proposed [3], [4], [5],
[6], [3]. Another possibility is to use magnetic coupling.
This is particularly attractive since this form of computing
can be done at room temperatures [7], unlike those based
on electronic charge interactions, which require very low
temperatures. Bandhyopadhay [8] has advocated the use
of local spin coupling for computing, a middle ground
between quantum computing and spinotronic transistors. The
architecture is essentially a cellular automata architecture, but
with spin coupling energies for logic computing.

So far, suggestions for field coupled computing has been
for Boolean logic based computing [7], [2]. Indeed, most
work on nano-logic that seeks to replicate traditional com-
puting involving logic and arithmetic operations [9], [10],
[11]. Other applications that have been proposed with QCAs
are signal processing [12], permutation matrices [13], inter-
connection networks [14], and fast Fourier transforms [15].
However, the energy minimization aspects of CAs have not
been directly harnessed [16].

Since nano-devices are expected to have high error rates,
both fabrication related and during operations, it makes sense
to consider error-tolerant applications where the cost of
failure of not finding the optimal solution is not high; even
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solutions that are close to optimal ones suffices in practice.
One such context is in quadratic optimization that arises
in computer vision. Energy minimization plays a central
role in computer vision algorithms. Nano-magnets offer a
tantalizing alternative to traditional form of digital computing
for solving quadratic energy minimization problems, drasti-
cally reducing the computational time required. Collection
of nano-magnets, when driven to their ground states, can be
seen to optimize a quadratic energy function that is deter-
mined by their relative placement. By controlling the relative
placement of magnets, we can change the energy function
being minimized. It is somewhat like analog computing from
the past, except that instead of solving differential equations
we solve minimization problems.

Imagine an energy minimization co-processor based on
nano-magnets that is heterogeneously integrated with CMOS.
In the long term, these vision computing circuits can be
integrated with camera circuitry to design cognitive cameras,
capable of higher level reasoning. The ”complier” for this
form of computing would transform a given energy mini-
mization problem into a set of equivalent coordinates for a
magnet collection. These magnets would be ”selected” from
a regular grid of nano-magnets by driving the non-computing
magnets into non-interacting vortex states. The array would
then be clocked to its ground state. The final states would
be read off as the solution to the problem. The vision
problem would then use these magnetic measurements as
the solution. We will essentially be solving an optimization
problem with each input-and-readout cycle as compared to
orders of magnitude more clock cycles that would be needed
in a Boolean logic circuit. The current work is towards this
long-term goal. We experimentally demonstrate the viability
of using single domain nano-magnetic coupling for function
minimization computing.

Unlike logic and arithmetic computing tasks that demand
exact computations, vision problems can work with near
optimal solutions. These vision problems place high demand
on computational resources (on Boolean logic based comput-
ing platforms). There have been proposals for using regular
arrays of quantum-dots [17], [18] and nano-magnets [19]
for low-level vision, mainly segmentation where the input
and the output are both regular grid of pixels. In this work
we consider quadratic energy forms that arise in contexts
involving extended image features rather than individual
pixels. These problems have high computational complexity
and are not amenable for single-instruction-multiple-data
(SIMD) type hardware solutions. To solve the vision prob-
lems that we target, VLSI implementation using traditional



logic would require complex MIMD architectures as opposed
to just SIMD architectures, which are prevalent in the design
of vision chips [20]. For instance, a recent proposal for
an object recognition chip uses both SIMD and MIMD
components [21].

II. VISION BACKGROUND

The term perceptual organization is used to describe the
act of recognizing important features of an image. For
instance in Figure 2 (a), the task is to find the visually
salient or important edges, such as the three parallel lines
in the center of the image. The detection or grouping of sig-
nificant features in an image is a computationally expensive
process. A useful fact is that grouping does not require exact
computational accuracy, meaning that solutions that are near
the optimal result are acceptable [22], [23]. The grouping of
low-level segments can be accomplished through a quadratic
energy minimization process [19]. Let there be N straight
lines in the image that we would like to group. With each
straight line, let us associate a variable, xi, taking on values
1 or 0, denoting whether it is significant or not significant,
respectively. Every pair of straight lines can be associated
with an affinity value capturing its saliency (or perceptual
importance). Various functional forms have been proposed in
the computer vision literature for this affinity function. They
all are designed to capture perceptual organization of the
straight lines. For instance, if two straight lines are parallel to
each other they will have high affinity than any other random
arrangements. The justification for this being that it is highly
unlikely for lines to be parallel to each other by chance.
There must be an underlying reason, and they are very likely
belong to some object in the scene. One mathematical form
that captures the pairwise saliency of the i-th and j-th line
segment in the image is the following

aij =
√
lilj exp

−
oij

max li,lj exp
− dmin

max li,lj cos2(2θij) (1)

where li and lj are the lengths of the two segments, θij , is
the angle between them, oij is the overlap with each other,
and dmin is the minimum distance between them. As one can
see from the expression, affinity between two straight lines
will be high for longer segments, segments that are parallel
to each other, or continuous to each other, or at right angles
to each other. Given these pairwise affinity values, the vision
problem is to find the values of xi for each segment such
that the following measure is maximized.∑

i

∑
j 6=i

aijxixj + (k −
∑
i

xi) (2)

The first term is the total of the pairwise affinities among the
segments with xi = 1 and the second term tries to enforce
that we have k segments with xi = 1. This is a hard problem
to solve. Traditional Boolean logic based approaches would
reduce this binary quadratic problem, into finding exact
solutions based on arithmetic and logical operations. This is
very demanding on a Boolean system and is not necessarily
required for the grouping of visual objects and magnetic

nano-systems present a unique way to accomplish such a
task in a direct manner.

III. MAGNETIC HAMILTONIAN

The basic unit of computation for magnetic logic is a
nano-magnet with dimensions and materials such it exhibits
single domain behavior, i.e. it can be modeled as one overall
magnetic state. The material composition and the geometry
(shape and size) of the nano-magnet determine the overall
magnetic behavior. For instance, for disk-shaped magnets
that are thin (say 20 nanometers, nm) and with diameter of
100 nm, all the magnetic vectors are aligned perpendicular to
the z-direction, in the xy-plane (single domain). The vectors
are either all aligned one direction, resulting in one overall
effective magnetic vector direction, or aligned in a circular
fashion, resulting in a vortex state. For a vortex state, there
is only a small effective magnetic vector in the z-direction at
the center of the magnet, but the overall magnetic effect in
the xy-direction is zero. Let the flat nano-scale disks be of
height h, radius r, and magnetization M0 ordered in an array
in the xy-plane. Bennett and Xu [24] showed that a disk of
uniform magnetization can be approximated well by a point
dipole with moment πr2hM0 that is oriented in the plane
forming an angle φ with the x-axis and with m(z) = 0. The
magnetization vector of the i-th magnet can be represented
by mi. The total Hamiltonian of an arrangement of magnets
is given by:

H =
∑

i mi
TDimi + µ0

∑
i mi

Thext+∑
i

∑
j 6=i mi

TCijmj
(3)

where Di is the demagnetization tensor of the i-th magnet,
capturing the shape anisotropy, Cij is the interaction matrix
between the i-th and j-th magnet, hext is the external field.
A diagonal matrix with value of 1/2 along the diagonal can
approximate the demagnetization tensor for a thin disk, so
the first energy term is a constant.

H = D0 + µ0

∑
i mi

Thext +
∑

i

∑
j 6=i mi

TCijmj

(4)
For dipole to dipole interaction approximation, the coupling
term (the third term) is given by

Cij =
µ0|M |
4πd3ij

(
3eijeij

T − I
)

(5)

= cij
(
3eijeij

T − I
)

(6)

where eij is the unit vector line joining the centers of the
two dipoles, dij is the distance between the centers, and I
is the identity matrix [25]. The term |M | is the product of
the magnetic moment magnitudes of the two magnets and is
constant for our magnets. The interaction term between i-th
and j-th magnet will be dependent on the relative placement
of the magnets. For any particular magnet if the interaction
was low with the other magnets, then it would be easy to
change its magnetization vector with a low external field.
Conversely, if the interaction with other magnets were high
then it would be hard to change its magnetization using a
low external field.



Fig. 1. Correspondence between nano-magnets (MFC) and vision problem
formulation. On the left are sample arrangements of pairs of straight lines
and on the right are the corresponding nano-magnet placements whose
interactions match the affinities between the lines.

IV. CORRESPONDENCE BETWEEN VISION AND
MAGNETS

Notice the correspondence between Equations 2 and 4.
Each line segment in the image correspond to a magnet.
The magnetizations, mi, in Equation 4 correspond to the
saliencies, xi, in Equation 2. The pair wise coupling con-
stants, cij, (Equation 6) correspond to the affinities, aij .
By engineering the distances between the magnets if we
can modify the coupling constants to match the respective
affinities, then the minimum state of the arrangement will
give us an approximate solution to the original problem.
Figure 1 shows some examples of this placement for two
straight lines. For the general case of N straight lines we
rely on the body of work in statistics called Multidimensional
Scaling (MDS) [26].

The objective is to find a configuration of points, rep-
resenting the low-level features, in a 2D space such that
the distance between i-th and j-th points, dij , will be
proportional to affinity between the corresponding lines, aij .
If magnetic cells are placed at these points coordinates then
the pairwise interaction between them will be proportional to
the given energies, i.e. cij ∝ aij . For this process, we look
into the rich areas of graph embedding onto planes [27],
[28] and multidimensional scaling [26]. The affinity matrix
can be considered to represent the adjacency matrix of a
weighted graph. The problem them is to embedded the nodes
of the graph in the plane in such a way as to preserve an
edges weight as Euclidean distance between them. If we
allow for distortions of weights of the graphs, this is indeed
possible [28], [29]. We have developed an approach based
on multidimensional scaling.

Let the matrix Λ be constructed out of given affinities
such that: Λrs = 1

(Aij)2
. We desire to find the coordinate of

each point in a 2D space, which we denote by the matrix of
coordinate vector, XMDS = [x1, · · · ,xN ], such that

(xi − xj)
T (xi − xj) = cΛrs (7)

XT
MDSXMDS = −c1

2
HΛH, where H = (I− 1

N
~1~1T )

(8)
with I as the identity matrix and ~1 as the vector of ones.
This operator H is referred to as the centering operator.
These coordinates X can be arrived at by classical MDS
scheme [26]. The solution is based on the singular value

decomposition of the centered distance matrix 1
2HΛH =

VMDS∆MDSV
T
MDS where VMDS , ∆MDS are the eigen-

vectors and eigenvalues respectively. Assuming that centered
distance matrix represents the inner product distances of a
Euclidean distance matrix, the coordinates are given by

XMDS = (VMDS∆
1
2

MDS)T (9)

Note that we have dropped the constant of proportionality, c,
since the energy minimizing solutions are invariant to scaling
of the original function. Our nano-magnet selection solution
is given by the first two rows of XMDS ; each column of this
matrix gives us the coordinates of the corresponding nano-
magnet to consider.

The computational overhead of this synthesis step is linear
in the number of the image features. This replaces the
complexity of the software solution to the minimization
problem.

V. FABRICATION PROCESS

A Si wafer was coated with PMMA via a Laurell Tech-
nologies WS-400A-8NPP/Lite Spin Processor. A single thin
layer of 950 molecular weight PMMA in anisole was spun
with a resulting thickness of approximately 120nm. After-
wards it was baked in an oven which provided even heat
over the entire wafer to evaporate any residual solvent. The
MFC systems were designed using DesignCAD2000 NT.
The most effective line spacing, exposure doses, points, and
focus were determined by using diagnostic wheel pattern.
The sample was then loaded into a JOEL 840m retrofitted
with the NPGS lithography system and beam blanker for
pattern exposure. Subsequently, the sample was unloaded for
development in MIBK:Isopropanol 3:1, after which a thin
Permalloy film was deposited via a Varian Model 980-2462
Electron Beam Evaporator. A vacuum of about 2µTorr was
achieved and evaporation was conducted at a fast rate to
reduce contamination. Liftoff was accomplished by placing
the sample coated with Permalloy in a heated ultrasonic
acetone bath for approximately 15 minutes.

VI. READ OUT SCHEME

Figure 2(a) show an example vision problem where we
have to find the visually salient subset of straight lines –
the three parallel lines in the middle. Figure 2(b) shows
the placement of magnets that can be used to solve this
problems. The magnetostatic coupling between the magnets
match the pairwise affinities of the lines. Each line is rep-
resented by a magnet. The white circles represent magnetic
nano-disks, enumerated from left to right. The disks were
made of permalloy with the thickness much less than the
lateral dimensions to force in-plane single domain magnetic
dipole moments. The experiment would proceed by applying
an external magnetizing field along a particular direction.
Afterwards, the field would be removed and the magnetic
cells would be allowed to settle into a ground state as shown
in Figure 2(c). The natural tendency for magnetic energy is
to be minimized, in this case primarily due to magneto-static
coupling. It would lead magnets 1-3 to arrange themselves



(a) (b)

(c) (d)

Fig. 2. Read out scheme for validation. (a) The vision problem: find
the visually salient lines. (b) Equivalent magnet arrangement with similar
Hamiltonian as the vision problem. The disks correspond to the lines. (c)
Magnetic initialization of the MFC system into a possible ground state of
the system after the external field is removed. (d) If the magnetization is
taken along axis M, the magnetization component of nano-disk 1, 2, and 3,
will be larger than those of 4 and 5.

in a ferromagnetic fashion. It was also possible for magnet 4
to experience a degree of coupling with magnets 1-3 which
could be demonstrated via an anti-ferromagnetic coupling.
The coupling exhibited among magnets 1-3 is expected
since the inter-spacing distant was smaller than that of
magnets 4 and 5. Our experimental measurements do indeed
demonstrate this to be the case.

If the magnetization vector of each magnet is taken along
axis M as shown in Figure 2(d), the magnetization of
magnets 1-3 would be greater than those of magnets 4 and
5. As mentioned previously, this magnetic interaction can be
modeled via a quadratic term and is computational intensive
but occurs naturally in the physical world, at least on the or-
der of nano-seconds. The magneto-static quadratic term was
inversely proportional to the quadratic edge affinity, which
determines the salient features of the image. So by setting
appropriate affinity thresholds, the edges corresponding to
magnets 1-3 would be regarded as a significant grouping,
while magnets 4 and 5 would not.

VII. RESULTS

Figures 3 (a) and (b) show AFM and MFM images of the
fabricated cells scanned along three directions. To ensure
a single domain magnetic dipole moment and to mitigate
vortex states, engineering of the shape anisotropy should be
such that the out of plane magnetization component of the
vortex core should produce higher demagnetization energy

(a)

(b)

Fig. 3. Fabricated nano-magnets for the vision problem (a) AFM height
amplitude image and the fabricated layout of the MFC system. As can be
seen in the graph the diameter of the measured nano-disk is 131.75 nm
and the thickness is 21.658 nm. (b) Three images show MFM scans of the
fabricated arrangement, scanned along different directions.

than that of an in-plane single domain state. The average
dimensions of the nano-magnetic disks were approximately
130 nm in diameter and 20 nm thick and are referred
to as magnets from left to right. As desired, the three
leftmost magnets (1, 2, 3) in all the three different scan
directions were in a single domain state, with their magnetic
configurations unaltered. This is due to the ferromagnetic
dipole-dipole coupling between close neighbors that reduce
the susceptibility of the nano-magnets to the stray fields from
emanating from the scanning probe.

When analyzing the two right most magnets (magnets
4 and 5), which should be in a decoupled single domain
state due to the distance in between their nearest neighbors,
we see a pinwheel type magnetization. This was due to
sample-probe interaction that caused the nano-disk to flip its
magnetization during data acquisition, signifying weak in-
teraction with neighboring elements. Even though the probe
tip altered the magnetic state of the nano-disk, the single
domain moment could still be extrapolated via the presence
of the strong dipoles. By retracing the scanning process of
the tip with a scan angle of 0, as shown in Figure 3 (b) by
the arrow, where the slow scan is progresses from bottom to
top and the fast scan is from left to right, the single domain
moment can be followed as it flips throughout the scan. The
stray field from the scanning tip was sufficiently strong to
flip the magnetization of magnet 4 at least 3 times during the
scan because it was decoupled from neighboring elements.
A similar process altered the magnetization of magnet 5 and
the different flipping behavior is explained by a preferred
magnetization axis in the vertical direction. This becomes
evident once the scan angle is 90 and the slow scan is in the
vertical direction. Magnet 5 flipped once during the scan in



a similar fashion to magnetic 4 with a scan angle of 0.

VIII. CONCLUSIONS

Magnetic Field-based Computing (MFC) has the potential
for offering a unique solution for the quadratic minimization
problem. This is unlike other proposals for the use of
nano-magnets for Boolean computing. A proof of concept
consisting of 5 nano-magnetic disks that related to low-level
edge segments of an image has been provided. The proof of
concept was fabricated and strictly adhered to a placement
algorithm that correlated magneto-static interactions to the
edge affinity energies of an image.
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